Pour garantir la validité de vos résultats, vérifiez que les règles suivantes sont respectées lorsque vous collectez des données, effectuez une analyse et interprétez vos résultats.
Une variable continue peut être mesurée et ordonnée, et dispose d'un nombre infini de valeurs entre deux valeurs quelconques. Par exemple, les diamètres d'un échantillon de pneus représentent une variable continue.
Les variables de catégorie ont un nombre fini et dénombrable de catégories ou de groupes distincts. Les données de catégorie peuvent ne pas présenter d'ordre logique. Par exemple, les prédicteurs de catégorie incluent le sexe d'individus, le type de matériel et le mode de paiement.
Si vos données comportent une variable discrète, vous pouvez décider de la traiter comme un prédicteur continu ou de catégorie. Une variable discrète peut être mesurée et ordonnée, mais ses valeurs son dénombrables. Par exemple, le nombre de personnes vivant dans une maison est une variable discrète. Le choix de traiter une variable discrète comme un prédicteur continu ou de catégorie dépend du nombre de niveaux, ainsi que de l'objectif de l'analyse. Pour plus d'informations, reportez-vous à la rubrique Que sont des variables de catégorie, discrètes et continues ?.
Si vous effectuez l'analyse avec des variables de réponse corrélées, la fonction PLS permet de détecter des schémas de réponses multivariés et des relations plus faibles qu'il n'est possible en effectuant une analyse différente pour chaque réponse.
Si la variable de réponse est une variable de catégorie, le modèle est moins susceptible de satisfaire les hypothèses de l'analyse, de décrire précisément vos données ou de permettre des prévisions utiles.
Si vos prédicteurs ne sont pas fortement corrélés et que leur nombre est inférieur à celui des observations, vous pouvez envisager d'autres analyses.
Si le modèle n'est pas bien ajusté aux données, les résultats risquent d'être trompeurs. Dans les résultats, utilisez les graphiques des valeurs résiduelles, les statistiques de sélection et de validation de modèle, ainsi que le diagramme des réponses pour déterminer l'ajustement du modèle aux données.