Pour garantir la validité de vos résultats, vérifiez que les règles suivantes sont respectées lorsque vous collectez des données, effectuez une analyse et interprétez vos résultats.
Une variable continue peut être mesurée et ordonnée, et dispose d'un nombre infini de valeurs entre deux valeurs quelconques. Par exemple, les diamètres d'un échantillon de pneus représentent une variable continue.
Les variables de catégorie ont un nombre fini et dénombrable de catégories ou de groupes distincts. Les données de catégorie peuvent ne pas présenter d'ordre logique. Par exemple, les prédicteurs de catégorie incluent le sexe d'individus, le type de matériel et le mode de paiement.
Si vos données comportent une variable discrète, vous pouvez décider de la traiter comme un prédicteur continu ou de catégorie. Une variable discrète peut être mesurée et ordonnée, mais ses valeurs son dénombrables. Par exemple, le nombre de personnes vivant dans une maison est une variable discrète. Le choix de traiter une variable discrète comme un prédicteur continu ou de catégorie dépend du nombre de niveaux, ainsi que de l'objectif de l'analyse. Pour plus d'informations, reportez-vous à la rubrique Que sont des variables de catégorie, discrètes et continues ?.
Si la multicolinéarité est importante, il se peut que vous ne puissiez pas déterminer les prédicteurs à inclure dans le modèle. Pour déterminer la sévérité de la multicolinéarité, examinez la corrélation entre les variables de prédiction. Pour déterminer si les prédicteurs sont hautement corrélés, sélectionnez .
Si le modèle n'est pas bien ajusté aux données, les résultats risquent d'être trompeurs. Un modèle est adéquat lorsque les valeurs de p des tests d'adéquation de l'ajustement sont supérieures à la valeur d'alpha. Ceci indique que vous êtes en mesure d'affirmer que le modèle n'est pas correctement ajusté aux données. Dans les résultats, vérifiez les tests d'adéquation de l'ajustement.