Tableau Analyse de la variance pour la fonction ANOVA à un facteur contrôlé

Obtenez des définitions et bénéficiez de conseils en matière d'interprétation pour chaque statistique du tableau d'analyse de la variance.

Test de Welch

Contrairement à la procédure ANOVA à un facteur contrôlé par défaut, le test de Welch ne part pas du principe que toutes les populations ont des variances égales. Afin que Minitab effectue un test de Welch pour la méthode ANOVA à un facteur contrôlé, désélectionnez Supposer les variances égales dans la sous-boîte de dialogue Options.

Interprétation

Reportez-vous à "Valeur de p" pour déterminer comment interpréter les résultats du test de Welch.

DL

Le nombre total de degrés de liberté (DL) représente la quantité d'informations dans vos données. L'analyse utilise ces informations pour estimer les valeurs des paramètres de population inconnus. Le nombre total de DL est déterminé par le nombre d'observations dans votre échantillon. Les DL d'un terme affichent la quantité d'informations utilisée par ce terme. Le fait d'accroître l'effectif de l'échantillon permet d'obtenir davantage d'informations sur la population, ce qui augmente le nombre total de degrés de liberté. Le fait d'augmenter le nombre de termes dans votre modèle utilise plus d'informations, ce qui réduit le nombre de DL disponibles pour l'estimation de la variabilité des estimations de paramètres.

Deux conditions doivent être remplies pour que Minitab subdivise les DL de l'erreur. D'abord, le modèle en cours doit ne pas inclure certains termes que vous pouvez ajuster avec les données. Par exemple, si vous disposez d'un prédicteur avec au moins 3 valeurs différentes, vous pouvez estimer un terme quadratique pour ce prédicteur. Si le modèle ne contient pas le terme quadratique, un terme pouvant être ajusté par les données n'est pas inclus au modèle, ce qui permet de remplir cette condition.

La seconde condition est que les données doivent contenir des répliques. Les répliques sont des observations où tous les prédicteurs ont la même valeur. Par exemple, si vous disposez de 3 observations où la pression est 5 et la température est 25, les 3 observations sont des répliques.

Si ces deux conditions sont remplies, les deux composantes des DL de l'erreur correspondant à l'inadéquation de l'ajustement et à l'erreur pure. Les DL pour l'inéquation de l'ajustement permettent de déterminer si la forme du modèle est adaptée. Le test d'inadéquation de l'ajustement utilise les degrés de liberté de l'inadéquation. Plus les DL sont nombreux pour l'erreur pure, plus le test d'inadéquation de l'ajustement est efficace.

DL du numérateur

Pour l'ANOVA de Welch, Minitab utilise les degrés de liberté du numérateur pour calculer la probabilité d'obtenir une valeur F qui soit au moins aussi élevée que la valeur F observée.

Interprétation

Minitab utilise la valeur F pour calculer la valeur de p. En général, vous devez évaluer la valeur de p, car elle est plus facile à interpréter.

DL du dénominateur

Pour l'ANOVA de Welch, Minitab utilise les degrés de liberté du dénominateur pour calculer la probabilité d'obtenir une valeur F qui soit au moins aussi élevée que la valeur F observée.

Interprétation

Minitab utilise la valeur F pour calculer la valeur de p. En général, vous devez évaluer la valeur de p, car elle est plus facile à interpréter.

SomCar séq

Les sommes des carrés séquentielles sont des mesures de la variation des différentes composantes du modèle. Contrairement aux sommes des carrés ajustées, les sommes des carrés séquentielles dépendent de l'ordre dans lequel les termes sont entrés dans le modèle. Pour l'ANOVA à un facteur contrôlé, les sommes des carrés séquentielles sont toujours égales aux sommes des carrés ajustées.

Contribution

La contribution est le pourcentage de la somme des carrés séquentielle totale (SomCar séq) pouvant être attribué à chaque source figurant dans le tableau de l'analyse de la variance.

Interprétation

Plus les pourcentages sont élevés, plus la part de la variation de la réponse expliquée par la source est importante.

SomCar ajust

Les sommes des carrés ajustées sont des mesures de la variation des différentes composantes du modèle. L'ordre des prédicteurs dans le modèle n'a aucun effet sur le calcul des sommes des carrés ajustées. Dans le tableau d'analyse de la variance, Minitab divise les sommes des carrés en différentes composantes qui décrivent la variation due à différentes sources.

Terme SomCar ajust
La somme des carrés ajustée pour un terme représente l'augmentation de la somme des carrés de la régression obtenue par rapport à un modèle qui comporte uniquement les autres termes. Elle permet ainsi de quantifier la variation des données de réponse expliquée par chaque terme du modèle.
SomCar ajust de l'erreur
La somme des carrés de l'erreur correspond à la somme des carrés des valeurs résiduelles. Elle quantifie la variation des données non expliquée par les prédicteurs.
SomCar ajust totale
La somme totale des carrés est obtenue en additionnant la somme des carrés du terme et la somme des carrés de l'erreur. elle quantifie la variation totale dans les données.

Interprétation

Minitab utilise la somme des carrés ajustée pour calculer la valeur de p pour un terme. Minitab utilise aussi les sommes des carrés pour calculer la statistique R2. En général, vous interprétez les valeurs de p et la statistique R2 plutôt que les sommes des carrés.

CM ajust

Les carrés moyens ajustés mesurent la proportion de variation expliquée par un terme ou un modèle, en supposant que tous les autres termes sont dans le modèle, quel que soit l'ordre dans lequel ils ont été saisis. Contrairement aux sommes des carrés ajustées, les carrés moyens ajustés tiennent compte des degrés de liberté.

Le carré moyen ajusté de l'erreur (également noté CME ou s2) est la variance autour des valeurs ajustées.

Interprétation

Minitab utilise les carrés moyens ajustés pour calculer la valeur de p pour un terme. Minitab les utilise également pour calculer la statistique R2 ajusté. En général, vous interprétez les valeurs de p et la statistique R2 ajusté plutôt que les carrés moyens ajustés.

Valeur F

Une valeur F apparaît pour chaque terme dans le tableau d'analyse de la variance :
Valeur F pour le modèle ou les termes
La valeur F est une statistique de test utilisée pour déterminer si le terme est associé à la réponse.
Valeur F pour le test d'inadéquation de l'ajustement
La valeur F est une statistique de test utilisée pour déterminer s'il manque au modèle des termes d'ordre supérieur comprenant les prédicteurs du modèle en cours.

Interprétation

Minitab utilise la valeur F pour calculer la valeur de p, qui vous permet de déterminer si des termes sont significatifs et de choisir le modèle approprié. La valeur de p est la probabilité qui mesure le degré de certitude avec lequel il est possible d'invalider l'hypothèse nulle. Des probabilités faibles permettent d'invalider l'hypothèse nulle avec plus de certitude.

Une valeur F suffisamment élevée indique que le terme ou le modèle est significatif.

Si vous souhaitez utiliser la valeur F pour savoir si l'hypothèse nulle doit être rejetée, comparez-la à votre valeur critique. Vous pouvez calculer la valeur critique dans Minitab ou rechercher la valeur critique dans un tableau de loi F, disponible dans la plupart des livres de statistiques. Pour plus d'informations sur la façon d'utiliser Minitab pour calculer la valeur critique, accédez à la rubrique Utilisation de la fonction de répartition (CDF) inverse et cliquez sur "Utiliser la CDF inverse pour calculer des valeurs critiques".

Valeur de p

La valeur de p est la probabilité qui mesure le degré de certitude avec lequel il est possible d'invalider l'hypothèse nulle. Des probabilités faibles permettent d'invalider l'hypothèse nulle avec plus de certitude.

Interprétation

Utilisez la valeur de p dans les résultats d'une ANOVA pour déterminer si les différences entre certaines moyennes sont statistiquement significatives.

Pour déterminer si des différences entre les moyennes sont statistiquement significatives, comparez la valeur de p du terme à votre seuil de signification pour évaluer l'hypothèse nulle. L'hypothèse nulle veut que les moyennes de population soient toutes égales. En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe.
Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.
Si la valeur de p est inférieure ou égale au seuil de signification, vous pouvez rejeter l'hypothèse nulle et conclure que toutes les moyennes de population ne sont pas égales. Utilisez vos connaissances spécialisées afin de déterminer si les différences sont significatives dans la pratique. Pour plus d'informations, reportez-vous à la rubrique Signification statistique et pratique.
Valeur de p > α : les différences entre certaines moyennes ne sont pas statistiquement significatives.
Si la valeur de p est supérieure au seuil de signification, vous ne pouvez pas rejeter l'hypothèse nulle car vous n'êtes pas en mesure de conclure que les moyennes de population sont égales. Vérifiez que le test est assez puissant pour détecter une différence qui est significative dans la pratique. Pour plus d'informations, reportez-vous à la rubrique Augmenter la puissance d'un test d'hypothèse.