En général, vous utilisez la fonction Maximum de vraisemblance restreinte, car l'estimateur de la composante de variance par le maximum de vraisemblance restreinte (REML) est approximativement non biaisé, tandis que l'estimateur du maximum de vraisemblance est biaisé. Toutefois, la taille du biais diminue pour les effectifs d'échantillons élevés.
Utilisez la fonction Maximum de vraisemblance pour déterminer si un modèle emboîté avec un nombre réduit de termes d'effet fixe est aussi bien adapté que son modèle de référence ayant plus de termes d'effet fixe, sachant que les deux modèles disposent du même nombre de termes aléatoires et de la même structure de variance. Plus spécifiquement, soit le logarithme de vraisemblance -2 du modèle complet, et le logarithme de vraisemblance -2 du modèle réduit.
Sous l'hypothèse nulle, asymptotiquement, suit une loi du Khi deux où les degrés de liberté sont égaux à la différence du nombre de paramètres pour les termes d'effet fixe entre le modèle de référence et le modèle emboîté. Vous pouvez utiliser le test du rapport de vraisemblance pour évaluer si un sous-ensemble de termes d'effet fixe peut être supprimé du modèle de référence.
Pour plus d'informations sur le test du rapport de vraisemblance des paramètres fixes dans un modèle à effets mixtes, reportez-vous à West, Welch et Galecki.1
En général, vous utilisez la fonction Approximation de Kenward-Roger, car les calculs utilisent un estimateur ajusté de la matrice de covariance pour les valeurs de réponse qui réduit le biais des petits échantillons. Vous pouvez également utiliser la fonction Approximation de Satterthwaite. Généralement, lorsque l'effectif d'échantillon est élevé, les deux méthodes présentent moins de différence.