Un coefficient de régression décrit l'importance et le sens de la relation entre un prédicteur et la variable de réponse. Les coefficients sont les nombres par lesquels les valeurs du terme sont multipliées dans une équation de régression.
Dans la fonction MANOVA générale, Minitab affiche les coefficients pour la constante et les covariables pour chaque analyse univariée. Pour déterminer les facteurs de catégorie, consultez les tableaux Analyse de la variance et Moyennes.
Le coefficient d'un terme représente la variation de la réponse moyenne associée à la variation de ce terme quand tous les autres prédicteurs sont maintenus constants. Le signe du coefficient indique la direction de la relation entre le terme et la réponse. La taille du coefficient aide généralement à évaluer si l'effet d'un terme sur la variable de réponse est significatif dans la pratique. Toutefois, l'importance du coefficient n'indique pas si un terme est statistiquement significatif ou non car le calcul de la signification prend également en compte la variation des données de réponse. Pour évaluer la signification statistique, examinez la valeur de p du terme.
Par exemple, le responsable d'une entreprise considère que les résultats d'un employé à un test de compétences professionnelles peuvent être prévus à l'aide du modèle de régression y = 130 + 4,3x. Dans cette équation, x représente les heures de formation sur les lieux de travail (de 0 à 20) et y représente le résultat au test. Le coefficient, ou la pente, est de 4,3, ce qui signifie que pour chaque nouvelle heure de formation, le résultat moyen au test augmente de 4,3 points.
L'erreur type du coefficient estime la variabilité entre les estimations des coefficients que vous obtiendriez si vous préleviez des échantillons dans la même population de façon répétée. Le calcul suppose que l'effectif d'échantillon et les coefficients à estimer restent identiques même après plusieurs échantillonnages.
Vous pouvez utiliser l'erreur type du coefficient pour mesurer la précision de l'estimation du coefficient. Plus l'erreur type est petite, plus l'estimation est précise. Si vous divisez le coefficient par son erreur type, vous obtiendrez une valeur de t. Si la valeur de p associée à cette statistique t est inférieure au seuil de signification, vous en concluez que le coefficient est significatif sur le plan statistique.
Par exemple, des techniciens évaluent un modèle décrivant une isolation dans le cadre d'un test sur l'énergie héliothermique :
Terme | Coeff | Coef ErT | Valeur de T | Valeur de p | FIV |
---|---|---|---|---|---|
Constante | 809 | 377 | 2,14 | 0,042 | |
Sud | 20,81 | 8,65 | 2,41 | 0,024 | 2,24 |
Nord | -23,7 | 17,4 | -1,36 | 0,186 | 2,17 |
Heure journée | -30,2 | 10,8 | -2,79 | 0,010 | 3,86 |
Dans ce modèle, les prédicteurs Nord et Sud mesurent la position d'un point focal en pouces. Les coefficients pour Nord et Sud sont les mêmes. L'erreur type associée au coefficient pour Sud est inférieure celle associée au coefficient pour Nord. Par conséquent, le modèle permet d'estimer le coefficient pour Sud avec davantage de précision.
L'erreur type du coefficient pour Nord est presque aussi importante que la valeur du coefficient lui-même. La valeur de p obtenue étant plus élevée que les seuils de signification courants, vous ne pouvez pas en conclure que le coefficient pour Nord diffère de zéro.
Le coefficient pour Sud est plus proche de zéro que celui pour Nord, et l'erreur type du coefficient pour Sud est plus faible. La valeur de p obtenue est inférieure aux seuils de signification courants. L'estimation du coefficient pour Sud étant plus précise, vous pouvez en conclure que ce coefficient diffère de zéro.
La signification statistique est un critère pouvant être utilisé pour réduire un modèle dans le cadre de la régression multiple. Pour plus d'informations, reportez-vous à la rubrique Réduction du modèle.
La valeur de t mesure le rapport entre le coefficient et son erreur type.
Minitab utilise la valeur de t pour calculer la valeur de p, qui permet de déterminer si le coefficient est significativement différent de 0.
Vous pouvez utiliser la valeur de t afin de déterminer si l'hypothèse nulle doit être rejetée. Cependant, la valeur de p est plus souvent utilisée, car le seuil de rejet de l'hypothèse nulle ne dépend pas des degrés de liberté. Pour plus d'informations sur l'utilisation de la valeur de t, reportez-vous à la rubrique Utiliser la valeur de t afin de déterminer si l'hypothèse nulle doit être rejetée.
La valeur de p est la probabilité qui mesure le degré de certitude avec lequel il est possible d'invalider l'hypothèse nulle. Des probabilités faibles permettent d'invalider l'hypothèse nulle avec plus de certitude.