La ligne centrale représente la moyenne du procédé, μ. Si vous ne spécifiez pas de valeur historique pour la moyenne du procédé, Minitab utilise la moyenne des observations.
Si vous ne spécifiez pas de valeur historique pour l'écart type du procédé, σ, Minitab détermine σ à partir de vos données en utilisant la méthode indiquée.
Terme | Description |
---|---|
μ | moyenne du procédé |
k | paramètre pour le test 1 (la valeur par défaut est 3) |
La moyenne de l'étendue mobile, , de longueur w est obtenue par la formule suivante :
où EMi est l'étendue mobile pour l'observation i, calculée comme suit :
Minitab utilise pour calculer Sem, qui est une estimation non biaisée de σ :
Terme | Description |
---|---|
n | nombre d'observations |
w | longueur de l'étendue mobile. La valeur par défaut est 2. |
d2() | valeur de la constante de correction de biais d2 correspondant à la valeur indiquée entre parenthèses |
Utilisez les estimations de Nelson pour corriger toute valeur d'étendue mobile anormalement élevée dans le calcul des limites de contrôle. La procédure est similaire à celle proposée par Nelson1 Minitab élimine toute valeur d'étendue mobile supérieure de plus de 3 σ à l'étendue mobile moyenne, puis recalcule cette dernière et les limites de contrôle.
La médiane de l'étendue mobile, , de longueur w est obtenue par la formule suivante :
où EMi est l'étendue mobile pour l'observation i, calculée comme suit :
Minitab utilise pour calculer Sem, qui est une estimation non biaisée de σ :
Terme | Description |
---|---|
n | nombre d'observations |
w | longueur de l'étendue mobile. La valeur par défaut est 2. |
d4() | valeur de la constante de correction de biais d4 correspondant à la valeur indiquée entre parenthèses |
MSSD (pour Mean of squared successive differences) est la moyenne des différences successives carrées. La racine carrée de MSSD (SRMSSD) est calculée de la manière suivante :
Terme | Description |
---|---|
di | différence entre la valeur de l'observation i et celle de l'observation i – 1 |
N | nombre d'observations |
c4'(N) | constante de correction de biais issue d'un tableau |
d2(N) représente la valeur attendue pour l'étendue de N observations dans une population normale avec un écart type de 1. Ainsi, si r correspond à l'étendue d'un échantillon de N observations obéissant à une loi normale avec un écart type = σ, alors E(r) = d2(N)σ.
d3(N) représente l'écart type de l'étendue de N observations dans une population normale avec σ = 1. Ainsi, si r correspond à l'étendue d'un échantillon de N observations obéissant à une loi normale avec un écart type = σ, alors Ecart type(r) = d3(N)σ.
Utilisez le tableau suivant pour obtenir la constante de correction de biais pour une valeur donnée, N. (Pour déterminer la valeur de N, consultez la formule de la statistique correspondante.)
N | d2(N) | d3(N) | d4(N) |
---|---|---|---|
2 | 1,128 | 0,8525 | 0,954 |
3 | 1,693 | 0,8884 | 1,588 |
4 | 2,059 | 0,8798 | 1,978 |
5 | 2,326 | 0,8641 | 2,257 |
6 | 2,534 | 0,848 | 2,472 |
7 | 2,704 | 0,8332 | 2,645 |
8 | 2,847 | 0,8198 | 2,791 |
9 | 2,97 | 0,8078 | 2,915 |
10 | 3,078 | 0,7971 | 3,024 |
11 | 3,173 | 0,7873 | 3,121 |
12 | 3,258 | 0,7785 | 3,207 |
13 | 3,336 | 0,7704 | 3,285 |
14 | 3,407 | 0,763 | 3,356 |
15 | 3,472 | 0,7562 | 3,422 |
16 | 3,532 | 0,7499 | 3,482 |
17 | 3,588 | 0,7441 | 3,538 |
18 | 3,64 | 0,7386 | 3,591 |
19 | 3,689 | 0,7335 | 3,64 |
20 | 3,735 | 0,7287 | 3,686 |
21 | 3,778 | 0,7242 | 3,73 |
22 | 3,819 | 0,7199 | 3,771 |
23 | 3,858 | 0,7159 | 3,811 |
24 | 3,895 | 0,7121 | 3,847 |
25 | 3,931 | 0,7084 | 3,883 |
N | d2(N) |
---|---|
26 | 3,964 |
27 | 3,997 |
28 | 4,027 |
29 | 4,057 |
30 | 4,086 |
31 | 4,113 |
32 | 4,139 |
33 | 4,165 |
34 | 4,189 |
35 | 4,213 |
36 | 4,236 |
37 | 4,259 |
38 | 4,28 |
39 | 4,301 |
40 | 4,322 |
41 | 4,341 |
42 | 4,361 |
43 | 4,379 |
44 | 4,398 |
45 | 4,415 |
46 | 4,433 |
47 | 4,45 |
48 | 4,466 |
49 | 4,482 |
50 | 4,498 |
Utilisez les tableaux suivants pour obtenir les valeurs de la onstante de correction de biais, c4'(), qui est utilisée dans les formules de la méthode d'estimation sigma appelée racine carrée de MSSD.
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
2 | 0,79785 | 41 | 0,990797 | 80 | 0,995215 |
3 | 0,87153 | 42 | 0,991013 | 81 | 0,995272 |
4 | 0,905763 | 43 | 0,991218 | 82 | 0,995328 |
5 | 0,925222 | 44 | 0,991415 | 83 | 0,995383 |
6 | 0,937892 | 45 | 0,991602 | 84 | 0,995436 |
7 | 0,946837 | 46 | 0,991782 | 85 | 0,995489 |
8 | 0,953503 | 47 | 0,991953 | 86 | 0,995539 |
9 | 0,958669 | 48 | 0,992118 | 87 | 0,995589 |
10 | 0,962793 | 49 | 0,992276 | 88 | 0,995638 |
11 | 0,966163 | 50 | 0,992427 | 89 | 0,995685 |
12 | 0,968968 | 51 | 0,992573 | 90 | 0,995732 |
13 | 0,971341 | 52 | 0,992713 | 91 | 0,995777 |
14 | 0,973375 | 53 | 0,992848 | 92 | 0,995822 |
15 | 0,975137 | 54 | 0,992978 | 93 | 0,995865 |
16 | 0,976679 | 55 | 0,993103 | 94 | 0,995908 |
17 | 0,978039 | 56 | 0,993224 | 95 | 0,995949 |
18 | 0,979249 | 57 | 0,99334 | 96 | 0,99599 |
19 | 0,980331 | 58 | 0,993452 | 97 | 0,996030 |
20 | 0,981305 | 59 | 0,993561 | 98 | 0,996069 |
21 | 0,982187 | 60 | 0,993666 | 99 | 0,996108 |
22 | 0,982988 | 61 | 0,993767 | 100 | 0,996145 |
23 | 0,98372 | 62 | 0,993866 | 101 | 0,996182 |
24 | 0,984391 | 63 | 0,993961 | 102 | 0,996218 |
25 | 0,985009 | 64 | 0,994053 | 103 | 0,996253 |
26 | 0,985579 | 65 | 0,994142 | 104 | 0,996288 |
27 | 0,986107 | 66 | 0,994229 | 105 | 0,996322 |
28 | 0,986597 | 67 | 0,994313 | 106 | 0,996356 |
29 | 0,987054 | 68 | 0,994395 | 107 | 0,996389 |
30 | 0,98748 | 69 | 0,994474 | 108 | 0,996421 |
31 | 0,987878 | 70 | 0,994551 | 109 | 0,996452 |
32 | 0,988252 | 71 | 0,994626 | 110 | 0,996483 |
33 | 0,988603 | 72 | 0,994699 | 111 | 0,996514 |
34 | 0,988934 | 73 | 0,994769 | 112 | 0,996544 |
35 | 0,989246 | 74 | 0,994838 | 113 | 0,996573 |
36 | 0,98954 | 75 | 0,994905 | 114 | 0,996602 |
37 | 0,989819 | 76 | 0,99497 | 115 | 0,996631 |
38 | 0,990083 | 77 | 0,995034 | 116 | 0,996658 |
39 | 0,990333 | 78 | 0,995096 | 117 | 0,996686 |
40 | 0,990571 | 79 | 0,995156 | 118 | 0,996713 |
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
119 | 0,996739 | 160 | 0,997541 | 201 | 0,998016 |
120 | 0,996765 | 161 | 0,997555 | 202 | 0,998025 |
121 | 0,996791 | 162 | 0,99757 | 203 | 0,998034 |
122 | 0,996816 | 163 | 0,997584 | 204 | 0,998043 |
123 | 0,996841 | 164 | 0,997598 | 205 | 0,998052 |
124 | 0,996865 | 165 | 0,997612 | 206 | 0,998061 |
125 | 0,996889 | 166 | 0,997625 | 207 | 0,998070 |
126 | 0,996913 | 167 | 0,997639 | 208 | 0,998078 |
127 | 0,996936 | 168 | 0,997652 | 209 | 0,998087 |
128 | 0,996959 | 169 | 0,997665 | 210 | 0,998095 |
129 | 0,996982 | 170 | 0,997678 | 211 | 0,998104 |
130 | 0,997004 | 171 | 0,997691 | 212 | 0,998112 |
131 | 0,997026 | 172 | 0,997703 | 213 | 0,99812 |
132 | 0,997047 | 173 | 0,997716 | 214 | 0,998128 |
133 | 0,997069 | 174 | 0,997728 | 215 | 0,998137 |
134 | 0,997089 | 175 | 0,997741 | 216 | 0,998145 |
135 | 0,99711 | 176 | 0,997753 | 217 | 0,998152 |
136 | 0,99713 | 177 | 0,997765 | 218 | 0,99816 |
137 | 0,99715 | 178 | 0,997776 | 219 | 0,998168 |
138 | 0,99717 | 179 | 0,997788 | 220 | 0,998176 |
139 | 0,997189 | 180 | 0,9978 | 221 | 0,998184 |
140 | 0,997209 | 181 | 0,997811 | 222 | 0,998191 |
141 | 0,997227 | 182 | 0,997822 | 223 | 0,998199 |
142 | 0,997246 | 183 | 0,997834 | 224 | 0,998206 |
143 | 0,997264 | 184 | 0,997845 | 225 | 0,998214 |
144 | 0,997282 | 185 | 0,997856 | 226 | 0,998221 |
145 | 0,9973 | 186 | 0,997866 | 227 | 0,998228 |
146 | 0,997318 | 187 | 0,997877 | 228 | 0,998235 |
147 | 0,997335 | 188 | 0,997888 | 229 | 0,998242 |
148 | 0,997352 | 189 | 0,997898 | 230 | 0,99825 |
149 | 0,997369 | 190 | 0,997909 | 231 | 0,998257 |
150 | 0,997386 | 191 | 0,997919 | 232 | 0,998263 |
151 | 0,997402 | 192 | 0,997929 | 233 | 0,99827 |
152 | 0,997419 | 193 | 0,997939 | 234 | 0,998277 |
153 | 0,997435 | 194 | 0,997949 | 235 | 0,998284 |
154 | 0,99745 | 195 | 0,997959 | 236 | 0,998291 |
155 | 0,997466 | 196 | 0,997969 | 237 | 0,998297 |
156 | 0,997481 | 197 | 0,997978 | 238 | 0,998304 |
157 | 0,997497 | 198 | 0,997988 | 239 | 0,998311 |
158 | 0,997512 | 199 | 0,997997 | 240 | 0,998317 |
159 | 0,997526 | 200 | 0,998007 | 241 | 0,998323 |
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
242 | 0,99833 | 283 | 0,998553 | 324 | 0,99872 |
243 | 0,998336 | 284 | 0,998558 | 325 | 0,998723 |
244 | 0,998342 | 285 | 0,998562 | 326 | 0,998727 |
245 | 0,998349 | 286 | 0,998567 | 327 | 0,99873 |
246 | 0,998355 | 287 | 0,998571 | 328 | 0,998734 |
247 | 0,998361 | 288 | 0,998576 | 329 | 0,998737 |
248 | 0,998367 | 289 | 0,99858 | 330 | 0,99874 |
249 | 0,998373 | 290 | 0,998585 | 331 | 0,998744 |
250 | 0,998379 | 291 | 0,998589 | 332 | 0,998747 |
251 | 0,998385 | 292 | 0,998593 | 333 | 0,998751 |
252 | 0,998391 | 293 | 0,998598 | 334 | 0,998754 |
253 | 0,998397 | 294 | 0,998602 | 335 | 0,998757 |
254 | 0,998403 | 295 | 0,998606 | 336 | 0,998761 |
255 | 0,998408 | 296 | 0,998611 | 337 | 0,998764 |
256 | 0,998414 | 297 | 0,998615 | 338 | 0,998767 |
257 | 0,99842 | 298 | 0,998619 | 339 | 0,99877 |
258 | 0,998425 | 299 | 0,998623 | 340 | 0,998774 |
259 | 0,998431 | 300 | 0,998627 | 341 | 0,998777 |
260 | 0,998436 | 301 | 0,998632 | 342 | 0,99878 |
261 | 0,998442 | 302 | 0,998636 | 343 | 0,998783 |
262 | 0,998447 | 303 | 0,99864 | 344 | 0,998786 |
263 | 0,998453 | 304 | 0,998644 | 345 | 0,99879 |
264 | 0,998458 | 305 | 0,998648 | 346 | 0,998793 |
265 | 0,998463 | 306 | 0,998652 | 347 | 0,998796 |
266 | 0,998469 | 307 | 0,998656 | 348 | 0,998799 |
267 | 0,998474 | 308 | 0,99866 | 349 | 0,998802 |
268 | 0,998479 | 309 | 0,998664 | 350 | 0,998805 |
269 | 0,998484 | 310 | 0,998668 | 351 | 0,998808 |
270 | 0,998489 | 311 | 0,998671 | 352 | 0,998811 |
271 | 0,998495 | 312 | 0,998675 | 353 | 0,998814 |
272 | 0,9985 | 313 | 0,998679 | 354 | 0,998817 |
273 | 0,998505 | 314 | 0,998683 | 355 | 0,99882 |
274 | 0,99851 | 315 | 0,998687 | 356 | 0,998823 |
275 | 0,998515 | 316 | 0,99869 | 357 | 0,998826 |
276 | 0,998519 | 317 | 0,998694 | 358 | 0,998829 |
277 | 0,998524 | 318 | 0,998698 | 359 | 0,998832 |
278 | 0,998529 | 319 | 0,998701 | 360 | 0,998835 |
279 | 0,998534 | 320 | 0,998705 | 361 | 0,998837 |
280 | 0,998539 | 321 | 0,998709 | 362 | 0,99884 |
281 | 0,998544 | 322 | 0,998712 | 363 | 0,998843 |
282 | 0,998548 | 323 | 0,998716 | 364 | 0,998846 |
k | c4'(k) | k | c4'(k) | k | c4'(k) |
---|---|---|---|---|---|
365 | 0,998849 | 411 | 0,998963 | 457 | 0,999054 |
366 | 0,998851 | 412 | 0,998965 | 458 | 0,999056 |
367 | 0,998854 | 413 | 0,998967 | 459 | 0,999058 |
368 | 0,998857 | 414 | 0,99897 | 460 | 0,999060 |
369 | 0,99886 | 415 | 0,998972 | 461 | 0,999061 |
370 | 0,998862 | 416 | 0,998974 | 462 | 0,999063 |
371 | 0,998865 | 417 | 0,998976 | 463 | 0,999065 |
372 | 0,998868 | 418 | 0,998978 | 464 | 0,999067 |
373 | 0,998871 | 419 | 0,99898 | 465 | 0,999068 |
374 | 0,998873 | 420 | 0,998982 | 466 | 0,999070 |
375 | 0,998876 | 421 | 0,998985 | 467 | 0,999072 |
376 | 0,998879 | 422 | 0,998987 | 468 | 0,999073 |
377 | 0,998881 | 423 | 0,998989 | 469 | 0,999075 |
378 | 0,998884 | 424 | 0,998991 | 470 | 0,999077 |
379 | 0,998886 | 425 | 0,998993 | 471 | 0,999078 |
380 | 0,998889 | 426 | 0,998995 | 472 | 0,999080 |
381 | 0,998892 | 427 | 0,998997 | 473 | 0,999082 |
382 | 0,998894 | 428 | 0,998999 | 474 | 0,999084 |
383 | 0,998897 | 429 | 0,999001 | 475 | 0,999085 |
384 | 0,998899 | 430 | 0,999003 | 476 | 0,999087 |
385 | 0,998902 | 431 | 0,999005 | 477 | 0,999088 |
386 | 0,998904 | 432 | 0,999007 | 478 | 0,999090 |
387 | 0,998907 | 433 | 0,999009 | 479 | 0,999092 |
388 | 0,998909 | 434 | 0,999011 | 480 | 0,999093 |
389 | 0,998912 | 435 | 0,999013 | 481 | 0,999095 |
390 | 0,998914 | 436 | 0,999015 | 482 | 0,999097 |
391 | 0,998917 | 437 | 0,999017 | 483 | 0,999098 |
392 | 0,998919 | 438 | 0,999019 | 484 | 0,9991 |
393 | 0,998921 | 439 | 0,999021 | 485 | 0,999101 |
394 | 0,998924 | 440 | 0,999023 | 486 | 0,999103 |
395 | 0,998926 | 441 | 0,999025 | 487 | 0,999104 |
396 | 0,998929 | 442 | 0,999027 | 488 | 0,999106 |
397 | 0,998931 | 443 | 0,999028 | 489 | 0,999108 |
398 | 0,998933 | 444 | 0,999030 | 490 | 0,999109 |
399 | 0,998936 | 445 | 0,999032 | 491 | 0,999111 |
400 | 0,998938 | 446 | 0,999034 | 492 | 0,999112 |
401 | 0,99894 | 447 | 0,999036 | 493 | 0,999114 |
402 | 0,998943 | 448 | 0,999038 | 494 | 0,999115 |
403 | 0,998945 | 449 | 0,999040 | 495 | 0,999117 |
404 | 0,998947 | 450 | 0,999042 | 496 | 0,999118 |
405 | 0,99895 | 451 | 0,999043 | 497 | 0,99912 |
406 | 0,998952 | 452 | 0,999045 | 498 | 0,999121 |
407 | 0,998954 | 453 | 0,999047 | 499 | 0,999123 |
408 | 0,998956 | 454 | 0,999049 | 500 | 0,999124 |
409 | 0,998959 | 455 | 0,999051 | ||
410 | 0,998961 | 456 | 0,999052 |
Si vous utilisez une transformation de Box-Cox, Minitab transforme les valeurs de données d'origine (Yi) conformément à la formule suivante :
où λ est le paramètre de transformation. Minitab crée ensuite une carte de contrôle des valeurs de données transformées (Wi). Pour découvrir comment Minitab choisit la valeur optimale pour λ, accédez à Méthodes et formules pour la fonction Transformation de Box-Cox.
λ | Transformation |
---|---|
2 | |
0,5 | |
0 | |
−0,5 | |
−1 |