Votre procédé doit être stable et les données de procédé originales (ou transformées) doivent suivre une loi de distribution normale. Les diagrammes de probabilité et les courbes normales ajustées vous permettent de rechercher des problèmes potentiels.
Utilisez les droites de Henry pour déterminer si vos données doivent suivre une loi normale.
Si la loi normale est un bon ajustement pour les données, les points forment une ligne à peu près droite le long de la droite d'ajustement située entre les bornes de confiance. Des écarts par rapport à cette ligne droite indiquent des écarts par rapport à la normalité. Si la valeur de p est supérieure à 0,05, vous pouvez supposer que les données suivent la loi normale. Vous pouvez évaluer la capabilité de votre procédé à l'aide d'une loi normale.
Pour chaque variable, comparez la courbe globale pleine et la courbe "à l'intérieur" en pointillés de l'histogramme pour déterminer l'alignement des courbes. Une différence substantielle entre les courbes peut indiquer que le procédé n'est pas stable ou qu'il existe une importante variation entre les sous-groupes de cette variable. Utilisez une carte de contrôle pour évaluer si votre procédé est stable pour la variable avant d'effectuer une analyse de capabilité.
Si votre procédé présente naturellement une grande variation entre les sous-groupes, par exemple dans le cas d'un procédé par lots, et si la variation n'est pas due à des causes spéciales, sélectionnez l'option Entre/à l'intérieur des sous-groupes lorsque vous effectuez l'analyse de capabilité normale pour plusieurs variables. Si vous utilisez l'analyse entre/à l'intérieur, une différence substantielle entre les deux courbes peut indiquer une source systémique de variation dans le procédé, en plus de la variation entre et à l'intérieur des sous-groupes.
Pour chaque groupe ou variable dans vos données, utilisez l'histogramme des capabilités pour examiner visuellement les observations d'échantillons par rapport aux exigences du procédé.
Pour chaque variable, examinez visuellement les données de l'histogramme par rapport aux limites de spécification inférieure et supérieure. Dans l'idéal, la dispersion des données est plus étroite que la dispersion de spécification, et toutes les données se trouvent dans les limites de spécification. Les données qui se trouvent en dehors des limites de spécification représentent des éléments non conformes.
Pour déterminer le nombre réel de pièces non conformes dans votre procédé, utilisez les résultats de PPM < LSI, PPM > LSS et PPM Total. Pour plus d'informations, reportez-vous à la rubrique Toutes les statistiques et tous les graphiques.
Pour chaque variable, déterminez si le procédé est centré entre les limites de spécification ou sur la valeur cible, le cas échéant. Le centre des données survient au pic de la courbe de distribution, il est estimé par la moyenne de l'échantillon.
Utilisez les principaux indices de capabilité pour évaluer si votre procédé répond aux exigences.
Utilisez Cpk pour évaluer la capabilité potentielle de votre procédé en fonction de l'emplacement et de la dispersion du procédé. La capabilité potentielle indique la capabilité pouvant être obtenue si les décalages et les glissements du procédé sont éliminés.
En règle générale, des valeurs Cpk élevées indiquent que le procédé offre une capabilité satisfaisante. Des valeurs Cpk faibles indiquent que votre procédé peut nécessiter une amélioration.
Comparez Cpk à une valeur de référence représentant la valeur minimale acceptable pour votre procédé. De nombreux secteurs industriels utilisent une valeur référence de 1,33. Si Cpk est inférieur à votre référence, réfléchissez à des moyens d'améliorer votre procédé, par exemple en réduisant sa variation ou en décalant son emplacement.
Comparez Cp et Cpk. Si Cp et Cpk sont à peu près égaux, le procédé est centré entre les limites de spécification. Si Cp et Cpk sont différents, le procédé n'est pas centré.
Utilisez Ppk pour évaluer la capabilité globale de votre procédé en fonction de l'emplacement et de la dispersion du procédé. La capabilité globale indique les performances réelles de votre procédé que le client constate au fil du temps.
En règle générale, des valeurs Ppk élevées indiquent que le procédé offre une capabilité satisfaisante. Des valeurs Ppk faibles indiquent que votre procédé peut nécessiter une amélioration.
Comparez Ppk à une valeur de référence représentant la valeur minimale acceptable pour votre procédé. De nombreux secteurs industriels utilisent une valeur référence de 1,33. Si Ppk est inférieur à votre référence, réfléchissez à des moyens d'améliorer votre procédé.
Comparez Pp et Ppk. Si les valeurs de Pp et de Ppk sont à peu près égales, le procédé est centré entre les limites de spécification. Si Pp et Ppk sont différents, le procédé n'est pas centré.
Comparez Ppk et Cpk. Lorsqu'un procédé est maîtrisé, Ppk et Cpk sont à peu près égaux. La différence entre les indices Ppk et Cpk représente l'amélioration de la capabilité à laquelle vous pouvez vous attendre si les décalages et les glissements du procédé sont éliminés.
Les indices Cpk et Ppk mesurent la capabilité du procédé uniquement par rapport à la limite de spécification la plus proche de la moyenne du procédé. Ils représentent donc uniquement un côté de la courbe du procédé et ne mesurent aucunement ses performances de l'autre côté. Si votre procédé produit des éléments non conformes qui se situent en dehors des limites de spécification inférieure et supérieure, utilisez d'autres mesures de capabilité pour évaluer de façon plus complète les performances du procédé. Pour plus d'informations, reportez-vous à la rubrique Toutes les statistiques et tous les graphiques.