Qu'est-ce que le test de Cochran-Mantel-Haenszel ?

Pour effectuer un test de Mantel-Haenszel-Cochran (MHC) sélectionnez Stat > Tableaux > Tableau à entrées multiples et Khi deux et cliquez sur Autres statistiques.

Le test de MHC permet de tester l'association conditionnelle de deux variables binaires en présence d'une troisième variable de catégorie. Par exemple, vous analysez les résultats d'une élection entre les candidats A et B dans trois départements. Le premier tableau présente les votes combinés de ces trois départements, classés par sexe des électeurs. Le test exact de Fisher indique une valeur de p significative de 0,008 pour ce tableau, ce qui indique que le sexe des électeurs et le vote sont dépendants.

Sexe Candidat A Candidat B
Femme 942 737
Homme 737 699
Résultats combinés des votes des trois départements :

Test exact de Fisher : valeur de p = 0,0076587

Toutefois, vous souhaitez savoir si le département dans lequel réside un électeur est une variable sous-jacente dans cette association. Vous scindez le tableau combiné, en triant à plat les votes par sexe pour chaque département dans les trois tableaux suivants. Le test de MHC détermine si la différence apparente entre les votes des hommes et des femmes est réellement liée au sexe ou si elle est imputable à la variable sous-jacente du département de résidence d'un électeur. Dans cet exemple, le test analyse les trois tableaux ci-dessous.

Sexe Candidat A Candidat B
Femme 524 227
Homme 240 102
Electeurs résidant dans le département X :
Sexe Candidat A Candidat B
Femme 160 250
Homme 243 355
Electeurs résidant dans le département Y :
Sexe Candidat A Candidat B
Femme 258 260
Homme 254 242
Electeurs résidant dans le département Z :

Le test de MHC évalue le degré d'association entre le vote et le sexe tout en tenant compte du département de résidence. Il calcule un rapport des probabilités de succès commun dans les tableaux et une valeur de p pour évaluer sa signification.

Dans l'exemple, le test de MHC produit un rapport des probabilités de succès commun de 0,95. Cette statistique observée indique que, dans tous les départements, la probabilité qu'une femme vote pour le candidat A est égale à 0,95 fois celle qu'un homme vote pour ce même candidat ; en d'autres termes, les probabilités de voter pour le candidat A sont presque égales pour les hommes et les femmes. En outre, le test de MHC calcule une valeur de p pour évaluer la signification statistique du rapport des probabilités de succès commun, or la valeur de p de 0,55 n'est pas significative. Par conséquent, vous concluez que, bien que le vote et le sexe des électeurs semblent associés dans le tableau combiné, la prise en compte du département de résidence révèle que le vote et le sexe des électeurs sont indépendants, dans chaque département. Il est possible que la véritable différence dans les tendances de vote se joue entre les départements, mais pas entre les sexes. Une analyse approfondie devrait porter sur l'impact du département de résidence d'un électeur sur son vote, car ce test de MHC a déterminé que le sexe n'est pas statistiquement significatif.

Le test de MHC suppose qu'aucune interaction à 3 facteurs n'existe.

En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique