Interprétation des résultats principaux pour Puissance et effectif de l'échantillon pour un test de Poisson à un échantillon

Suivez les étapes ci-dessous pour interpréter Puissance et effectif de l'échantillon pour un test de Poisson à un échantillon. Les résultats principaux incluent le taux de comparaison, l'effectif de l'échantillon, la puissance et la courbe de puissance.

Etape 1 : examiner les valeurs calculées

En utilisant les valeurs des deux variables de fonction de puissance que vous avez entrées, Minitab calcule le taux de comparaison, l'effectif de l'échantillon ou la puissance du test.

Taux de comparaison

Minitab calcule le taux de comparaison. La différence entre le taux de comparaison et le taux hypothétisé est la différence minimale pour laquelle vous pouvez atteindre le niveau de puissance indiqué pour chaque effectif de l'échantillon. Des effectifs d'échantillons plus grands permettent au test de détecter de plus petites différences. Vous voulez détecter la plus petite différence ayant des conséquences pratiques pour votre application.

Effectif d'échantillon

Minitab calcule l'effectif d'échantillon nécessaire pour un test avec la puissance que vous avez saisie pour détecter la différence entre le taux hypothétisé et le taux de comparaison. Etant donné que les effectifs d'échantillons sont des nombres entiers, la puissance réelle du test peut être légèrement supérieure à la valeur de puissance que vous avez indiquée.

Si vous augmentez l'effectif de l'échantillon, la puissance du test augmente également. L'échantillon doit contenir suffisamment d'observations pour atteindre une puissance adéquate. Toutefois, si l'effectif de l'échantillon est trop grand, vous risquez de gaspiller du temps et de l'argent sur un échantillonnage inutile ou de détecter des différences non significatives sur le plan statistique.

Puissance

Minitab calcule la puissance du test en fonction de l'effectif d'échantillon et du taux de comparaison spécifiés. La valeur de puissance 0,9 est généralement appropriée. Une valeur de 0,9 indique que vous avez 90 % de chances de détecter une différence entre le taux hypothétisé et le taux de comparaison lorsqu'elle existe réellement. Si un test a une faible puissance, vous pouvez ne pas réussir à détecter une différence et conclure à tort qu'il n'en existe aucune. En général, plus la différence ou l'effectif d'échantillon est faible, moins le test est puissant pour détecter une différence.

Comparison Sample Rate Size Power 13 25 0.842947 13 30 0.898200
Résultats principaux : différence, effectif de l'échantillon et puissance

Ces résultats montrent que si le taux de comparaison est de 13 et que les effectifs d'échantillons sont de 25 et de 30, la puissance du test est d'approximativement de 0,84 et de 0,9, pour chaque effectif d'échantillon respectivement. Par conséquent, un effectif d'échantillon de 30 fournit une puissance adéquate pour un taux de comparaison de 13.

Etape 2 : examiner la courbe de puissance

La courbe de puissance vous permet d'évaluer la puissance ou l'effectif d'échantillon adapté pour le test.

La courbe de puissance représente toutes les combinaisons de puissance et de taux de comparaison pour chaque effectif de l'échantillon lorsque le seuil de signification reste constant. Chaque symbole sur la courbe de puissance représente une valeur calculée en fonction des valeurs saisies. Par exemple, si vous entrez un effectif d'échantillon et une valeur de puissance, Minitab calcule la proportion de comparaison correspondante et affiche la valeur calculée sur le graphique.

Examinez les valeurs sur la courbe pour déterminer la différence entre le taux de comparaison et le taux hypothétisé, pouvant être détectée à une valeur de puissance et un effectif d'échantillon spécifiques. La valeur de puissance 0,9 est généralement appropriée. Toutefois, certains spécialistes considèrent que la valeur 0,8 est adéquate. Si un test d'hypothèse offre une puissance inférieure, il se peut que vous ne puissiez pas détecter une différence significative sur le plan pratique. Si vous augmentez l'effectif de l'échantillon, la puissance du test augmente également. L'échantillon doit contenir suffisamment d'observations pour atteindre une puissance adéquate. Toutefois, si l'effectif de l'échantillon est trop grand, vous risquez de gaspiller du temps et de l'argent sur un échantillonnage inutile ou de détecter des différences non significatives sur le plan statistique. Lorsque vous réduisez la taille de la différence à détecter, la puissance diminue également.

Dans ce graphique, la courbe de puissance pour un effectif d'échantillon de 25 indique que le test offre une puissance d'approximativement 0,84 pour un taux de comparaison de 13. Pour un effectif d'échantillon de 30, la courbe de puissance indique que le test offre une puissance d'approximativement 0,9 pour un taux de comparaison de 13. Lorsque le taux de comparaison se rapproche du taux hypothétisé (15, dans ce graphique), la puissance du test diminue et se rapproche de α (également appelé seuil de signification), qui est de 0,05 pour cette analyse.
En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique