Exemple de calcul et d'interprétation d'une valeur de p

Vous souhaitez déterminer si un nouvel additif pour essence influe sur la consommation de carburant. Mettons que la consommation d'essence connue pour ce modèle de voiture spécifique est de 25 milles au gallon (mpg) ; les hypothèses de cette étude seront alors les suivantes : H0 : μ = 25 et HA : μ ≠ 25.

Obtention de la valeur de p à partir d'un test t à 1 échantillon

Vous testez 35 voitures et découvrez que les résultats en milles au gallon sont compris entre 14,4 et 28,8. Après avoir entré les données dans la colonne MPG, vous effectuez un test t dans Minitab (en utilisant la commande de menu Stat > Statistiques élémentaires > Test t à 1 échantillon ou la commande de session TTEST) et obtenez les résultats suivants :

Test T à 1 échantillon : C1

Statistiques descriptives ErT IC à 95% pour N Moyenne EcTyp moyenne μ 35 23,657 3,416 0,577 (22,484; 24,831) μ: moyenne de C1
Test Hypothèse nulle H₀ : μ = 25 Hypothèse alternative H₁ : μ ≠ 25

Valeur Valeur de T de P -2,33 0,026

Interprétation de la valeur de p

Les résultats montrent que la moyenne de l'échantillon de 35 voitures est de 23,657. Mais les milles au gallon moyens de toutes les voitures de ce type (μ) peuvent encore être de 25. Vous devez savoir si l'échantillon est suffisant pour rejeter l'hypothèse H0. La méthode la plus courante consiste à comparer la valeur de p au seuil de signification, α (alpha). La valeur α correspond à la probabilité de rejeter l'hypothèse H0 lorsque celle-ci est vraie. Dans ce cas-ci, il s'agit de la probabilité de conclure que la moyenne de la population n'est pas de 25 mpg alors que c'est le cas.

La valeur de p détermine dans quelle mesure vos données permettent de rejeter H0. En règle générale, plus la valeur de p est faible, plus il est facile de rejeter H0. Plus spécifiquement, la valeur de p est la plus petite valeur d'α permettant de rejeter H0. Pour toute valeur d'α > valeur de p, vous ne pouvez pas rejeter l'hypothèse H0, et pour toute valeur d'α valeur de p, vous rejetez l'hypothèse H0.

Dans notre exemple avec le test t, la statistique de test est une fonction de la moyenne, et la valeur de p est de 0,026. Cela signifie que, pour 2,6 % des échantillons d'effectif 35 et provenant de la population où µ = 25, la moyenne obtenue fournirait au moins autant de preuves permettant de conclure que µ n'est pas égal à 25 que celle de l'échantillon actuel. A vous ensuite de vous demander s'il est plus probable que µ = 25 et que vous ayez simplement choisi un échantillon très inhabituel, ou que µ ne soit pas égal à 25.

La valeur de p est traditionnellement comparée à des valeurs d'α inférieures à 0,05 ou à 0,01, selon le domaine d'étude. Consultez les publications spécialisées propres à votre domaine pour connaître les valeurs acceptables.

Dans notre exemple, supposons que la valeur d'α est de 0,05. La valeur de p de 0,026 indique que la consommation moyenne de toutes les voitures de ce type (pas uniquement la moyenne des 35 voitures dans l'étude) n'est probablement pas égale à 25 mpg. D'un point de vue statistique, il serait plus correct de dire : "à un seuil de signification de 0,05, la consommation moyenne en mpg semble significativement différente de 25".

Il est ainsi aisé d'utiliser les valeurs de p si vous connaissez deux éléments clés : les valeurs d'α acceptables dans votre domaine de spécialité et les hypothèses nulle et alternative utilisées pour vos tests.

En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique