Méthodes et formules pour la fonction Etude R&R de l'instrumentation développée

Sélectionnez la méthode ou la formule de votre choix.

Méthodes d'étude de R&R de l'instrumentation développée

Minitab utilise l'approche du modèle linéaire général avec trois types de modèles ANOVA pour effectuer des études de R&R de l’instrumentation : modèle à effets aléatoires, modèle à effets mixtes et modèle à plans emboîtés. Le modèle à effets aléatoires est le modèle par défaut. Le modèle à effets mixtes ou à plans emboîtés est utilisé en cas de facteurs fixes ou emboîtés.

Le modèle sélectionné final inclut uniquement les termes des effets principaux, les interactions significatives les plus élevées et les interactions applicables entre ces éléments. Minitab calcule le tableau ANOVA pour le modèle approprié. Ce tableau est ensuite utilisé pour calculer les composantes de variance, qui apparaissent dans les tableaux de R&R de l'instrumentation.

Références

Burdick, R. K., Borror, C. M. et Montgomery, D.C. (2003). "A Review of Methods for Measurement Systems Capability Analysis", Journal of Quality Technology, 35(4) 342–354.

Adamec, E. et Burdick, R.K. (2003). "Confidence Intervals for a Discrimination Ratio in a Gauge R&R Study with Three Random Factors", Quality Engineering, 15(3) 383–389.

Modèle à effets aléatoires

Le modèle par défaut utilisé dans cette commande est le modèle à effets aléatoires. Si vous spécifiez un modèle complet pour les trois facteurs, alors :

Yijkl = μ + Pi + Oj + Ak + (PO)ij + (PA)jk + (OA)jk + (POA)ijk + εijkl

où :
TermeDescription
μconstante
Piième pièce
TermeDescription
Oj jème opérateur
TermeDescription
Akkème niveau du facteur supplémentaire

Pi, Oj , Ak, (PO)ij, (PA)jk, (OA)jk, (POA)ijk et εijkl sont distribuées normalement de façon indépendante avec une moyenne de zéro et, respectivement, des variances de .

Minitab utilise Ajuster le modèle linéaire général pour estimer les composantes de variance. Pour plus d'informations sur l'estimation des composantes de la variance, accédez à la rubrique Méthodes et formules pour Ajuster le modèle linéaire général.

Si le terme Pièce est le seul terme utilisé pour calculer la variation de pièce à pièce :
R&R de l'instrumentation totale
Répétabilité
Reproductibilité
Opérateur
A
Pièce * Opérateur
Pièce * A
De pièce à pièce
Pièce
Variation totale
Remarque

Lorsque vous indiquez que la variation de procédé doit être estimée par l'écart type historique, Minitab procède comme suit :

  • Si l'écart type est supérieur à l'écart type total de l'instrumentation calculé à partir des données, l'écart type total est égal à σ et l'écart type de la variation de pièce à pièce est égal à .
  • Sinon, Minitab utilise les données pour estimer l'écart type total et la variation de pièce à pièce.

Si davantage de termes sont spécifiés pour la variation de pièce à pièce, le tableau est modifié en conséquence. Par exemple, si le facteur Pièce et le facteur A représentent tous deux la variation de procédé, le terme Pièce, A, et leurs interactions sont spécifiés pour estimer la variation de pièce à pièce :
R&R de l'instrumentation totale
Répétabilité
Reproductibilité
Opérateur
Pièce * Opérateur
De pièce à pièce
Pièce
A
Pièce * A
Variation totale
Remarque

Lorsque vous indiquez que la variation de procédé doit être estimée par l'écart type historique, Minitab procède comme suit :

  • Si l'écart type est supérieur à l'écart type total de l'instrumentation calculé à partir des données, l'écart type total est égal à σ et l'écart type de la variation de pièce à pièce est égal à .
  • Sinon, Minitab utilise les données pour estimer l'écart type total et la variation de pièce à pièce.

Pour plus de 3 facteurs, les composantes de variance pour Répétabilité de l'instrumentation, Reproductibilité et De pièce à pièce sont définies de façon similaire au cas à 3 facteurs. Généralement :
  • Répétabilité de l'instrumentation = composante de variance du terme d'erreur
  • Variation de pièce à pièce = composante de variance pour les composantes Pièces ou Somme de la variance pour les termes De pièce à pièce
  • Reproductibilité de l'instrumentation = composantes Somme de la variance pour le reste des termes

Modèle à effets mixtes

Si certains termes du modèle linéaire sont fixes, il s'agit d'un modèle à effets mixtes. Les composantes de variance des termes aléatoires sont obtenues à l'aide des résultats de Ajuster le modèle linéaire général.

Pour plus d'informations sur l'estimation des composantes de variance, accédez à la rubrique Méthodes et formules pour Ajuster le modèle linéaire général.

Pour les termes fixes, il n'existe aucune composante de variance. La variabilité entre les niveaux d'un terme fixe est estimée comme suit :
  1. En ajustant le modèle linéaire, Minitab estime les coefficients pour les J-1 premiers niveaux du facteur.
  2. Le coefficient du niveau J = –(somme des coefficients entre les J-1 premiers niveaux).
  3. Estimation de la variabilité = somme des valeurs (coefficient)2 de tous les niveaux / nombre de niveaux.

Dans le calcul de la reproductibilité de l'instrumentation pour les effets mixtes, les composantes de variance des termes fixes seront remplacées par φ, mais les définitions du modèle à effets aléatoires s'appliqueront.

Modèle de plan emboîté

Si certains facteurs sont emboîtés dans d'autres facteurs, Minitab ajuste le modèle à l'aide de Ajuster le modèle linéaire général. Pour plus d'informations sur l'estimation des composantes de variance, accédez à la rubrique Méthodes et formules pour Ajuster le modèle linéaire général.

La répétabilité de l'instrumentation, la reproductibilité et la variation de pièce à pièce sont définies comme dans les cas de facteurs aléatoires et fixes.

Calculs de R&R de l'instrumentation développée

Minitab affiche deux tableaux pour Etude R&R de l'instrumentation développée. Le premier tableau comporte la colonne CompVar et la colonne % contribution (de CompVar). Pour plus d'informations sur l'estimation des composantes de la variance, accédez à la rubrique Méthodes et formules pour Ajuster le modèle linéaire général.

% contribution = valeur de CompVar / Variation totale.

Le deuxième tableau contient :
  • Ecart type = Racine carrée (CompVar)
  • Var étude = nombre d'écarts types * Ecart type
  • Var. de l'étude (%) (%VE) = Var étude / Var étude pour Variation totale
  • %Tolérance = Var étude / Tolérance de procédé
  • % procédé = Ecart type / écart type historique

Nombre de catégories distinctes

Le nombre de catégories distinctes représente le nombre d'intervalles de confiance non superposés qui recouvrent l'étendue de la variation du produit examiné. Vous pouvez également le considérer comme le nombre de groupes que votre système de mesure peut distinguer dans les données du procédé.

Ensuite, Minitab tronque cette valeur, excepté lorsqu'elle est inférieure à 1. Dans ce cas, Minitab définit le nombre de catégories distinctes sur la valeur 1.

Intervalle de confiance

Supposons que Sup et Inf soient les bornes inférieure et supérieure du rapport de la variance d'instrumentation et de la variance totale, les bornes inférieure et supérieure du nombre de catégories distinctes sont les suivantes :

Remarque

Inf et Sup doivent se trouver dans l'étendue (0, 1). Si les valeurs Inf et Sup sont en dehors de l'étendue, les bornes inférieure et supérieure du nombre de catégories distinctes sont manquantes.

Probabilités de mauvais classement

Minitab calcule les probabilités de mauvais classement comme des probabilités conjointes et des probabilités conditionnelles lorsque vous saisissez au moins une limite de spécification.

Probabilités conjointes

Probabilité que la pièce soit mauvaise et que vous l'acceptiez :

Probabilité que la pièce soit bonne et que vous la rejetiez :

Probabilités conditionnelles

Probabilité qu'en présence d'une mauvaise pièce, vous l'acceptiez (acceptation à tort) :

Probabilité qu'en présence d'une bonne pièce, vous la rejetiez (rejet à tort) :

Notation

F(X,Y) est la fonction de répartition cumulée (CDF) du vecteur aléatoire normal bivarié (X,Y)T avec :

moyenne, μ = (θ,θ)T

F(X) et F(Y) sont les CDF minimes correspondantes.

En d'autres termes,

En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique