Qu'est-ce que la transformation des données ?

Si vous utilisez une analyse de capabilité conçue pour des données normales, comme Analyse de capabilité normale, vos données doivent suivre une distribution normale. Si vos données ne sont pas normales, les résultats de l'analyse ne seront pas exacts. Parfois, vous pouvez transformer des données non normales en appliquant une fonction aux données qui modifie leurs valeurs, afin qu'elles suivent davantage une distribution normale.

Par exemple, supposons que vous souhaitiez effectuer une analyse de capabilité portant sur le délai de livraison des pizzas. Etant donné qu'il existe un délai de livraison minimal, mais aucune durée maximale de livraison définie, les données sont asymétriques à droite. Une transformation peut être appliquée pour supprimer cette asymétrie sévère des données.

Avant la transformation

Les délais de livraison des pizzas sont asymétriques vers la droite et ne semblent pas être distribués normalement.

Après transformation

Une fois les données transformées, elles suivent davantage la distribution normale.

Comment fonctionne la transformation de Box-Cox ?

La transformation de Box-Cox est une transformation par puissance, W = Y**λ, dans laquelle Minitab détermine la meilleure valeur pour λ.

Bien que la meilleure estimation de lambda (λ) soit un nombre quelconque compris entre −5 et 5, vous voulez que, dans toute situation réelle, la valeur λ corresponde à une transformation compréhensible, telle que la racine carrée (λ = 0,5) ou le logarithme népérien (λ = 0).

Comment fonctionne la transformation de Johnson ?

La transformation de Johnson utilise un algorithme différent de la transformation de Box-Cox. La fonction de transformation de Johnson est sélectionnée parmi trois familles de fonctions dans le système de Johnson. Etant donné que les fonctions couvrent une grande variété de distributions en modifiant les paramètres, Minitab trouve généralement une transformation acceptable. La famille sélectionnée par Minitab est appelée Meilleur type de transformation.

Effectuer une analyse de capabilité normale avec une transformation de données

Si vos données ne suivent pas une loi normale, vous pouvez leur appliquer une transformation pour pouvoir utiliser une analyse de capabilité normale.

  1. Sélectionnez Stat > Outils de la qualité > Analyse de capabilité > Normale. Cliquez sur Transformation.
  2. Choisissez une transformation :
    Option Description
    Transformation de Box-Cox Cette transformation est simple à comprendre et fournit des statistiques à l'intérieur des sous-groupes et des statistiques de capabilité globale.
    Transformation de Johnson Cette transformation est très puissante et peut être utilisée avec des données qui incluent des valeurs égales à zéro ou négatives, mais c'est un outil plus compliqué et qui ne fournit que des statistiques de capabilité globale. Utilisez-la lorsque la transformation de Box-Cox ne donne pas de transformation adaptée.
  3. Indiquez des options de transformation si vous le souhaitez, puis cliquez sur OK.
Si une transformation de vos données ne fonctionne pas, vous devez examiner les distributions non normales avec la fonction Identification de loi individuelle pour pouvoir utiliser une analyse de capabilité non normale.
En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique