Tableau Méthode pour la fonction Ajuster le modèle à effets mixtes

Obtenez des définitions et bénéficiez de conseils en matière d'interprétation pour chaque statistique fournie dans le tableau Méthode.
Utilisez le tableau Méthode pour vérifier que vous avez sélectionné la méthode correcte pour l'analyse.
Estimation de la variance

En général, vous utilisez la fonction Maximum de vraisemblance restreinte, car l'estimateur de la composante de variance par le maximum de vraisemblance restreinte (REML) est approximativement non biaisé, tandis que l'estimateur du maximum de vraisemblance est biaisé. Toutefois, la taille du biais diminue pour les effectifs d'échantillons élevés.

Utilisez la fonction Maximum de vraisemblance pour déterminer si un modèle emboîté avec un nombre réduit de termes d'effet fixe est aussi bien adapté que son modèle de référence correspondant ayant plus de termes d'effet fixe, sachant que les deux modèles disposent du même nombre de termes aléatoires et de la même structure de variance. Plus spécifiquement, soit le log de vraisemblance -2 du modèle complet, et le log de vraisemblance -2 du modèle réduit.

Sous l'hypothèse nulle, asymptotiquement, suit une loi du Khi deux où les degrés de liberté sont égaux à la différence du nombre de paramètres pour les termes d'effet fixe entre le modèle de référence et le modèle emboîté. Vous pouvez utiliser le test du rapport de vraisemblance pour évaluer si un sous-ensemble de termes d'effet fixe peut être supprimé du modèle de référence.

Pour plus d'informations sur le test du rapport de vraisemblance des paramètres fixes dans un modèle à effets mixtes, reportez-vous à West, Welch et Galecki.1

DL pour les effets fixes

En général, vous utilisez la fonction Approximation de Kenward-Roger, car les calculs utilisent un estimateur ajusté de la matrice de covariance pour les valeurs de réponse qui réduit le biais des petits échantillons. Vous pouvez également utiliser la fonction Approximation de Satterthwaite. En général, plus les effectifs d'échantillons sont élevés, moins les deux méthodes présentent de différence.

1 B. T. West, K.B. Welch et A.T. Gałecki (2007), Linear Mixed Models: A Practical Guide Using Statistical Software, First Edition, Chapman and Hall/CRC (34–36).
En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique