Tableau des coefficients pour la fonction MANOVA générale

Obtenez des définitions et bénéficiez de conseils en matière d'interprétation pour chaque statistique du tableau Coefficients.

Coeff

Un coefficient de régression décrit l'importance et le sens de la relation entre un prédicteur et la variable de réponse. Les coefficients sont les nombres par lesquels les valeurs du terme sont multipliées dans une équation de régression.

Dans la fonction MANOVA générale, Minitab affiche les coefficients pour la constante et les covariables pour chaque analyse univariée. Pour déterminer les facteurs de catégorie, consultez les tableaux Analyse de la variance et Moyennes.

Interprétation

Le coefficient d'un terme représente la variation de la réponse moyenne associée à la variation de ce terme quand tous les autres prédicteurs sont maintenus constants. Le signe du coefficient indique la direction de la relation entre le terme et la réponse. La taille du coefficient aide généralement à évaluer si l'effet d'un terme sur la variable de réponse est significatif dans la pratique. Toutefois, l'importance du coefficient n'indique pas si un terme est statistiquement significatif ou non car le calcul de la signification prend également en compte la variation des données de réponse. Pour évaluer la signification statistique, examinez la valeur de p du terme.

Par exemple, le responsable d'une entreprise considère que les résultats d'un employé à un test de compétences professionnelles peuvent être prévus à l'aide du modèle de régression y = 130 + 4,3x. Dans cette équation, x représente les heures de formation sur les lieux de travail (de 0 à 20) et y représente le résultat au test. Le coefficient, ou la pente, est de 4,3, ce qui signifie que pour chaque nouvelle heure de formation, le résultat moyen au test augmente de 4,3 points.

Coef ErT

L'erreur type du coefficient estime la variabilité entre les estimations des coefficients que vous obtiendriez si vous préleviez des échantillons dans la même population de façon répétée. Le calcul suppose que l'effectif d'échantillon et les coefficients à estimer restent identiques même après plusieurs échantillonnages.

Interprétation

Vous pouvez utiliser l'erreur type du coefficient pour mesurer la précision de l'estimation du coefficient. Plus l'erreur type est petite, plus l'estimation est précise. Si vous divisez le coefficient par son erreur type, vous obtiendrez une valeur de t. Si la valeur de p associée à cette statistique t est inférieure au seuil de signification, vous en concluez que le coefficient est significatif sur le plan statistique.

Par exemple, des techniciens évaluent un modèle décrivant une isolation dans le cadre d'un test sur l'énergie héliothermique :

Analyse de régression : Isolation en fonction de Sud; Nord; Heure journée

Coefficients Valeur Valeur Terme Coeff Coef ErT de T de p FIV Constante 809 377 2,14 0,042 Sud 20,81 8,65 2,41 0,024 2,24 Nord -23,7 17,4 -1,36 0,186 2,17 Heure journée -30,2 10,8 -2,79 0,010 3,86

Dans ce modèle, les prédicteurs Nord et Sud mesurent la position d'un point focal en pouces. Les coefficients pour Nord et Sud sont les mêmes. L'erreur type associée au coefficient pour Sud est inférieure celle associée au coefficient pour Nord. Par conséquent, le modèle permet d'estimer le coefficient pour Sud avec davantage de précision.

L'erreur type du coefficient pour Nord est presque aussi importante que la valeur du coefficient lui-même. La valeur de p obtenue étant plus élevée que les seuils de signification courants, vous ne pouvez pas en conclure que le coefficient pour Nord diffère de zéro.

Le coefficient pour Sud est plus proche de zéro que celui pour Nord, et l'erreur type du coefficient pour Sud est plus faible. La valeur de p obtenue est inférieure aux seuils de signification courants. L'estimation du coefficient pour Sud étant plus précise, vous pouvez en conclure que ce coefficient diffère de zéro.

La signification statistique est un critère pouvant être utilisé pour réduire un modèle dans le cadre de la régression multiple. Pour plus d'informations, reportez-vous à la rubrique Réduction du modèle.

Valeur de t

La valeur de t mesure le rapport entre le coefficient et son erreur type.

Interprétation

Minitab utilise la valeur de t pour calculer la valeur de p, qui permet de déterminer si le coefficient est significativement différent de 0.

Vous pouvez utiliser la valeur de t afin de déterminer si l'hypothèse nulle doit être rejetée. Cependant, la valeur de p est plus souvent utilisée, car le seuil de rejet de l'hypothèse nulle ne dépend pas des degrés de liberté. Pour plus d'informations sur l'utilisation de la valeur de t, reportez-vous à la rubrique Utiliser la valeur de t afin de déterminer si l'hypothèse nulle doit être rejetée.

Valeur de p - Coefficient

La valeur de p est la probabilité qui mesure le degré de certitude avec lequel il est possible d'invalider l'hypothèse nulle. Des probabilités faibles permettent d'invalider l'hypothèse nulle avec plus de certitude.

Interprétation

Pour déterminer si l'association entre la réponse et chacun des termes du modèle est statistiquement significative, comparez la valeur de p du terme à votre seuil de signification pour évaluer l'hypothèse nulle. L'hypothèse nulle est que le coefficient du terme est égal à zéro, ce qui implique qu'il n'existe aucune association entre le terme et la réponse. En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'il existe une association.
Valeur de p ≤ α : l'association est statistiquement significative.
Si la valeur de p est inférieure ou égale au seuil de signification, vous pouvez conclure qu'il existe une association statistiquement significative entre la variable de réponse et le terme.
Valeur de p > α : l'association n'est pas statistiquement significative.
Si la valeur de p est supérieure au seuil de signification, vous ne pouvez pas conclure qu'il existe une association statistiquement significative entre la variable de réponse et le terme. Il est sans doute nécessaire de réajuster le modèle sans le terme.
Si plusieurs prédicteurs ne présentent aucune association statistiquement significative avec la réponse, vous pouvez réduire le modèle en supprimant ces termes un par un. Pour plus d'informations sur la suppression de termes d'un modèle, reportez-vous à la rubrique Réduction du modèle.
Si un terme d'un modèle est statistiquement significatif, l'interprétation dépend du type de terme concerné. Les interprétations sont les suivantes :
  • Si un coefficient d'une variable continue est significatif, une variation de la valeur de la variable entraîne une variation de la valeur de réponse moyenne.
  • Si un coefficient d'un niveau de variable de catégorie est significatif, la moyenne correspondant à ce niveau est différente de la moyenne globale (codage -1, 0, +1) ou de la moyenne correspondant au niveau de référence (codage 0, 1).
  • Si un coefficient d'un terme d'interaction est significatif, la relation entre l'un des facteurs et la réponse dépend des autres facteurs du terme. Dans ce cas, vous ne devez pas interpréter les effets principaux sans prendre en compte l'effet d'interaction.
  • Si un coefficient d'un terme polynomial est significatif, vous pouvez en conclure que les données contiennent une courbure.
En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique