Todos los estadísticos para la Prueba de Kruskal-Wallis

Encuentre definiciones y ayuda para interpretar cada uno de los estadísticos que se proporcionan con Kruskal-Wallis.

N

El tamaño de la muestra (N) es el número total de observaciones en cada grupo.

Interpretación

El tamaño de la muestra afecta el intervalo de confianza y la potencia de la prueba.

Generalmente, una muestra más grande produce un intervalo de confianza más estrecho. Con un tamaño de muestra más grande, la prueba también tendrá más potencia para detectar una diferencia. Para obtener más información, vaya a ¿Qué es potencia?.

Mediana

La mediana es el punto medio del conjunto de datos. El valor de este punto medio es el punto en el cual la mitad de las observaciones está por encima del valor y la otra mitad está por debajo del valor. La mediana se determina jerarquizando las observaciones y hallando la observación que ocupe el número [N + 1] / 2 en el orden jerarquizado. Si los datos contienen un número impar de observaciones, la mediana es el valor promedio de las observaciones jerarquizadas en los números N / 2 y [N / 2] + 1.

Interpretación

La mediana de la muestra es una estimación de la mediana de la población de cada grupo. La mediana general es la mediana de todas las observaciones.

Rango de medias

El rango de medias es el promedio de los rangos de todas las observaciones de cada muestra. Minitab utiliza el rango de medias para calcular el valor h, que es el estadístico de prueba para la prueba de Kruskal-Wallis.

Para calcular el rango de medias, Minitab jerarquiza las muestras combinadas. Minitab asigna a la observación más pequeña un rango de 1, a la segunda observación más pequeña un rango de 2, y así sucesivamente. Si hay dos o más observaciones iguales, Minitab asigna el rango promedio a cada una de ellas. Minitab calcula el rango de medias para cada muestra.

Interpretación

Cuando el rango de medias de un grupo es mayor que el rango promedio general, los valores de las observaciones de ese grupo tienden a ser mayores que los de los otros grupos.

Valor Z

El valor z indica cómo se compara el rango promedio de cada grupo con el rango promedio de todas las observaciones.

Interpretación

Interprete los valores z de cada grupo de la siguiente manera:
  • Mientras mayor sea el valor absoluto, más lejos estará el rango promedio de un grupo del rango promedio general.
  • Un valor z negativo indica que el rango promedio de un grupo es menor que el rango promedio general.
  • Un valor z positivo indica que el rango promedio de un grupo es mayor que el rango promedio general.

Hipótesis nula e hipótesis alternativa

Las hipótesis nula y alternativa son dos enunciados mutuamente excluyentes acerca de una población. Una prueba de hipótesis utiliza los datos de la muestra para determinar si se puede rechazar la hipótesis nula.
Hipótesis nula
La hipótesis nula indica que un parámetro de población (tal como la media, la desviación estándar, etc.) es igual a un valor hipotético. La hipótesis nula suele ser una afirmación inicial que se basa en análisis previos o en conocimiento especializado.
Hipótesis alternativa
La hipótesis alternativa establece que un parámetro de población es más pequeño, más grande o diferente del valor hipotético de la hipótesis nula. La hipótesis alternativa es lo que usted podría pensar que es cierto o espera probar que es cierto.

GL

Los grados de libertad (GL) son iguales al número de grupos en los datos menos 1. Bajo la hipótesis nula, la distribución de chi-cuadrada se aproxima a la distribución del estadístico de prueba, con los grados de libertad especificados. Minitab utiliza la distribución de chi-cuadrada para estimar el valor p para esta prueba.

Valor h

H es el estadístico de prueba para la prueba de Kruskal-Wallis. Bajo la hipótesis nula, la distribución de chi-cuadrada se aproxima a la distribución de H. La aproximación es razonablemente precisa cuando ningún grupo tiene menos de cinco observaciones.

Interpretación

Minitab utiliza el estadístico de prueba para calcular el valor p, que se usa para tomar una decisión acerca de la significancia estadística de los términos y el modelo. El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.

Un estadístico de prueba lo suficientemente alto indica que al menos una diferencia entre las medianas es estadísticamente significativa.

Se puede utilizar el estadístico de prueba para determinar si puede rechazar la hipótesis nula. Sin embargo, por lo general es más práctico y conveniente utilizar el valor p de la prueba para hacer la misma determinación.

Valor p

El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.

Interpretación

Utilice el valor p para determinar si cualquiera de las diferencias entre las medianas es estadísticamente significativa.

Para determinar si cualquiera de las diferencias entre las medianas es estadísticamente significativa, compare el valor p con el nivel de significancia para evaluar la hipótesis nula. La hipótesis nula indica que las medias de población son todas iguales. Por lo general, un nivel de significancia (denotado como α o alfa) de 0.05 funciona adecuadamente. Un nivel de significancia de 0.05 indica un riesgo de 5% de concluir que existe una diferencia cuando no hay una diferencia real.
Valor p ≤ α: Las diferencias entre algunas de las medianas son estadísticamente significativas
Si el valor p es menor que o igual al nivel de significancia, usted rechaza la hipótesis nula y concluye que no todas las medianas de población son iguales. Utilice su conocimiento especializado para determinar si las diferencias son significativas desde el punto de vista práctico. Para obtener más información, vaya a Significancia estadística y práctica.
Valor p > α: Las diferencias entre las medianas no son estadísticamente significativas
Si el valor p es mayor que el nivel de significancia, usted no cuenta con suficiente evidencia para rechazar la hipótesis nula de que las medianas de población son todas diferentes. Verifique que la prueba tenga suficiente potencia para detectar una diferencia que sea significativa desde el punto de vista práctico. Para obtener más información, vaya a Aumentar la potencia de una prueba de hipótesis.
Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política