Revisión general de Ajustar modelo de Poisson

Utilice Ajustar modelo de Poisson para entender la relación entre un conjunto de predictores y la respuesta que describe el número de veces que ocurre un evento en un espacio de observación finito. Una respuesta de Poisson cuenta eventos, como por ejemplo el número de defectos detectados en un elemento. Usted puede incluir términos de interacción y polinómicos, realizar regresión escalonada y ajustar diferentes funciones de enlace.

Por ejemplo, un fabricante de tarjetas de circuitos desea modelar el número de defectos de soldadura en una tarjeta de circuitos.

Después de realizar el análisis, Minitab almacena el modelo para que usted pueda hacer lo siguiente:
  • Predecir la respuesta de nuevas observaciones.
  • Graficar las relaciones entre las variables.
  • Hallar valores que optimicen una o más respuestas.
Para obtener más información, vaya a Revisión general del modelo almacenado.

Dónde encontrar este análisis

Para ajustar un modelo de regresión de Poisson, elija Estadísticas > Regresión > Regresión de Poisson > Ajustar modelo de Poisson.

Cuándo utilizar un análisis alternativo

  • Si la variable de respuesta tiene dos categorías, como pasa y no pasa, utilice Ajustar modelo logístico binario.
  • Si la variable de respuesta contiene tres o más categorías que tienen un orden natural, como por ejemplo completamente en desacuerdo, en desacuerdo, neutral, de acuerdo, completamente de acuerdo, utilice Regresión logística ordinal.
  • Si la variable de respuesta contiene tres o más categorías que no tienen un orden natural, como por ejemplo raya, hendidura y rotura, utilice Regresión logística nominal.
Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política