Ajustes y diagnósticos para Ajustar modelo logístico binario

Encuentre definiciones y ayuda para interpretar los ajustes y diagnósticos.

Ajuste

El valor ajustado también se conoce como la probabilidad del evento o la probabilidad pronosticada. La probabilidad del evento es la probabilidad de que ocurra un resultado o evento específico. La probabilidad del evento estima la probabilidad de que ocurra un evento, como sacar un as de un mazo de cartas o producir una pieza no conforme. La probabilidad de un evento varía de 0 (imposible) a 1 (seguro).

Interpretación

En la regresión logística binaria, una variable de respuesta tiene solo dos valores posibles, tales como la presencia o ausencia de una enfermendad específica. La probabilidad del evento es la probabilidad de que la respuesta para un patrón dado de factores o covariables sea 1 para un evento (por ejemplo, la probabilidad de que una mujer mayor de 50 años desarrolle diabetes de tipo 2).

Cada ejecución en un experimento se denomina ensayo. Por ejemplo, si usted lanza una moneda al aire 10 veces y registra el número de caras, usted realiza 10 ensayos del experimento. Si los ensayos son independientes e igual de probables, usted puede estimar la probabilidad del evento dividiendo el número de eventos entre el número total de ensayos. Por ejemplo, si obtiene 6 caras en 10 lanzamientos de moneda, la probabilidad estimada del evento (obtener caras) es:

Número de eventos ÷ Número de ensayos = 6 ÷ 10 = 0.6

En la regresión logística nominal y ordinal, una variable de respuesta puede tener tres o más categorías. La probabilidad del evento es la probabilidad de que un patrón dado de factores o covariables tenga una categoría de respuestas específicas. La probabilidad acumulada de evento es la probabilidad de que la respuesta para un patrón dado de factores o covariables esté en la categoría k o inferior, para cada k posible, donde k es igual a las categorías de respuesta, 1…k.

EE ajuste

El error estándar del ajuste (EE ajuste) estima la variación en la respuesta media estimada para la configuración especificada de las variables. El cálculo del intervalo de confianza para la respuesta media utiliza el error estándar del ajuste. Los errores estándar siempre son no negativos.

Interpretación

Utilice el error estándar del ajuste para medir la precisión de la estimación de la respuesta media. Cuanto menor sea el error estándar, más precisa será la respuesta media pronosticada. Por ejemplo, un analista desarrolla un modelo para pronosticar el tiempo de entrega. Para un conjunto de valores de configuración de las variables, el modelo predice un tiempo medio de entrega de 3.80 días. El error estándar del ajuste para estos valores de configuración es 0.08 días. Para un segundo conjunto de valores de configuración de las variables, el modelo produce el mismo tiempo medio de entrega con un error estándar del ajuste de 0.02 días. El analista puede estar más seguro de que el tiempo medio de entrega del segundo conjunto de valores de configuración de las variables está cerca de 3.80 días.

Con el valor ajustado, usted puede utilizar el error estándar del ajuste para crear un intervalo de confianza para la respuesta media. Por ejemplo, dependiendo del número de grados de libertad, un intervalo de confianza de 95% se extiende aproximadamente dos errores estándar por encima y por debajo de la media pronosticada. Para los tiempos de entrega, el intervalo de confianza de 95% de la media pronosticada de 3.80 días cuando el error estándar es 0.08 es (3.64, 3.96) días. Usted puede estar 95% seguro de que la media de la población se encuentra dentro de este rango. Cuando el error estándar es 0.02, el intervalo de confianza de 95% es (3.76, 3.84) días. El intervalo de confianza del segundo conjunto de valores de configuración de las variables es más estrecho porque el error estándar es menor.

Intervalo de confianza para el ajuste (IC de 95%)

Estos intervalos de confianza (IC) son rangos de valores que es muy probable que contengan la probabilidad del evento para la población que incluye los valores observados de las variables predictoras que se encuentran en el modelo.

Puesto que las muestras son aleatorias, es poco probable que dos muestras de una población produzcan intervalos de confianza idénticos. Sin embargo, si se toman muchas muestras, un determinado porcentaje de los intervalos de confianza resultantes incluirá el parámetro de población desconocido. El porcentaje de estos intervalos de confianza que contiene el parámetro es el nivel de confianza del intervalo.

El intervalo de confianza consta de las dos partes siguientes:
Estimación de punto
La estimación de punto es la estimación del parámetro que se calcula a partir de los datos de la muestra. El intervalo de confianza está centrado alrededor de este valor.
Margen de error
El margen de error define la amplitud del intervalo de confianza y es determinado por la variabilidad observada en la muestra, el tamaño de la muestra y el nivel de confianza. Para calcular el límite superior del intervalo de confianza, el margen de error se suma a la estimación de punto. Para calcular el límite inferior del intervalo de confianza, el margen de error se resta de la estimación de punto.

Interpretación

Utilice el intervalo de confianza para evaluar la estimación del valor ajustado para los valores observados de las variables.

Por ejemplo, con un nivel de confianza de 95%, usted puede estar 95% seguro de que el intervalo de confianza contiene la probabilidad del evento para los valores especificados de las variables incluidas en el modelo. El intervalo de confianza ayuda a evaluar la significancia práctica de los resultados. Utilice su conocimiento especializado para determinar si el intervalo de confianza incluye valores que tienen significancia práctica para su situación. Si el intervalo es demasiado amplio para ser útil, considere aumentar el tamaño de la muestra.

Resid

El residuo es una medida de qué tan bien el modelo pronostica la observación. Por opción predeterminada, Minitab calcula los residuos de desviación. Las observaciones que el modelo no ajusta adecuadamente tienen altos residuos de desviación y de Pearson. Minitab calcula los residuos para cada patrón diferente de factores/covariables.

La interpretación de los residuos es igual si se usan los residuos de desviación o los residuos de Pearson. Cuando el modelo usa la función de enlace logit, la distribución de los residuos de desviación está más cerca de la distribución de los residuos de un modelo de regresión de mínimos cuadrados. Los residuos de desviación y los residuos de Pearson se vuelven más similares a medida que aumenta el número de ensayos para cada combinación de valores de configuración de los predictores.

Interpretación

Grafique los residuos para determinar si el modelo es adecuado y cumple con los supuestos de regresión. Examinar los residuos puede ofrecer información útil acerca de qué tan bien se ajusta el modelo a los datos. En general, los residuos deberían estar distribuidos aleatoriamente, sin patrones obvios ni valores poco comunes. Si Minitab determina que los datos incluyen observaciones poco comunes, identifica esas observaciones en la tabla Ajustes y diagnósticos para observaciones poco comunes en la salida. Para obtener más información sobre valores poco comunes, vaya a Observaciones poco comunes.

Resid Est

El residuo estandarizado es igual al valor de un residuo (ei) dividido entre una estimación de su desviación estándar.

Interpretación

Utilice los residuos estandarizados como ayuda para detectar valores atípicos. Los residuos estandarizados mayores que 2 y menores que −2 por lo general se consideran grandes. La tabla Ajustes y diagnósticos para observaciones poco comunes identifica estas observaciones con una 'R'. Cuando un análisis indica que hay muchas observaciones poco comunes, el modelo generalmente exhibe una falta de ajuste significativa. Es decir, el modelo no describe adecuadamente la relación entre los factores y la variable de respuesta. Para obtener más información, vaya a Observaciones poco comunes.

Los residuos estandarizados son útiles porque los residuos sin procesar podrían no ser buenos indicadores de valores atípicos. La varianza de cada residuo sin procesar puede diferir según los valores de X asociados al residuo. Esta escala desigual hace que sea difícil evaluar los tamaños de los residuos sin procesar. La estandarización de los residuos soluciona este problema al convertir las diferentes varianzas a una escala común.

La interpretación de los residuos es igual si se usan los residuos de desviación o los residuos de Pearson. Cuando el modelo usa la función de enlace logit, la distribución de los residuos de desviación está más cerca de la distribución de los residuos de un modelo de regresión de mínimos cuadrados. Los residuos de desviación y los residuos de Pearson se vuelven más similares a medida que aumenta el número de ensayos para cada combinación de valores de configuración de los predictores.

Residuos elim.

Cada residuo studentizado eliminado se calcula con una fórmula que equivale a eliminar sistemáticamente cada una de las observaciones del conjunto de datos, estimar la ecuación de regresión y determinar qué tan bien el modelo predice la observación eliminada. Cada residuo studentizado eliminado también se estandariza al dividir el residuo eliminado de una observación entre una estimación de su desviación estándar. La observación se omite para determinar cómo se comporta el modelo sin esta observación. Si una observación tiene un residuo eliminado studentizado grande (si su valor absoluto es mayor que 2), podría tratarse de un valor atípico en los datos.

Interpretación

Utilice los residuos studentizados eliminados para detectar valores atípicos. Cada observación se omite para determinar qué tan bien el modelo predice la respuesta cuando no está incluida en el proceso de ajuste del modelo. Los residuos studentizados eliminados mayores que 2 o menores que −2 generalmente se consideran grandes. Las observaciones que Minitab etiqueta no siguen adecuadamente la ecuación de regresión propuesta. Sin embargo, se espera que haya algunas observaciones poco comunes. Por ejemplo, con base en los criterios para los residuos grandes, se esperaría que aproximadamente el 5% de las observaciones sean marcadas como observaciones con un residuo grande. Si el análisis revela muchas observaciones poco comunes, el modelo probablemente no describe adecuadamente la relación entre los predictores y la variable de respuesta. Para obtener más información, vaya a Observaciones poco comunes.

Los residuos estandarizados y eliminados podrían ser más útiles que los residuos sin procesar en la identificación de valores atípicos. Se ajustan a las posibles diferencias en la varianza de residuos sin procesar debido a los diferentes valores de los predictores o factores.

Hi (apalancamiento)

El Hi, también denominado apalancamiento, mide la distancia del valor x de una observación hasta el promedio de los valores x de todas las observaciones en un conjunto de datos.

Interpretación

Los valores de Hi están entre 0 y 1. Minitab identifica las observaciones con valores de apalancamiento superior a 3p/n o 0.99, el valor que sea menor, mediante una X en la tabla de ajustes y diagnósticos de observaciones poco usuales. En 3p/n, p es el número de coeficientes en el modelo y n es el número de observaciones. Las observaciones que Minitab etiqueta con una 'X' podrían ser influyentes.

Las observaciones influyentes tienen un efecto desproporcionado sobre el modelo y pueden generar resultados engañosos. Por ejemplo, la inclusión o exclusión de un punto influyente puede cambiar el hecho de que un coeficiente sea estadísticamente significativo o no. Las observaciones influyentes pueden ser puntos de apalancamiento, valores atípicos o ambos.

Si ve una observación influyente, determine si la observación es un error de entrada de datos o de medición. Si la observación no es un error de entrada de datos ni de medición, determine qué tan influyente es la observación. En primer lugar, ajuste el modelo con y sin la observación. Luego, compare los coeficientes, los valores p, el R2 y otras informaciones del modelo. Si el modelo cambia significativamente al eliminar la observación influyente, examine más a fondo el modelo para determinar si se especificó de forma incorrecta. Es posible que tenga que recopilar más datos para resolver el problema.

DFITS

DFITS mide el efecto que tiene cada observación sobre los valores ajustados en un modelo lineal. DFITS representa aproximadamente el número de desviaciones estándar que el valor ajustado cambia cuando cada observación se elimina del conjunto de datos y el modelo se reajusta.

Interpretación

Las observaciones que tienen un valor DFITS grande pueden podrían ser influyentes. Un criterio comúnmente utilizado para un valor DFITS grande es si el DFITS es mayor que lo siguiente:
TérminoDescription
pel número de términos del modelo
nel número de observaciones

Las observaciones influyentes tienen un efecto desproporcionado sobre el modelo y pueden generar resultados engañosos. Por ejemplo, la inclusión o exclusión de un punto influyente puede cambiar el hecho de que un coeficiente sea estadísticamente significativo o no. Las observaciones influyentes pueden ser puntos de apalancamiento, valores atípicos o ambos.

Si ve una observación influyente, determine si la observación es un error de entrada de datos o de medición. Si la observación no es un error de entrada de datos ni de medición, determine qué tan influyente es la observación. En primer lugar, ajuste el modelo con y sin la observación. Luego, compare los coeficientes, los valores p, el R2 y otras informaciones del modelo. Si el modelo cambia significativamente al eliminar la observación influyente, examine más a fondo el modelo para determinar si se especificó de forma incorrecta. Es posible que tenga que recopilar más datos para resolver el problema.

Distancia (D) de Cook

La distancia de Cook (D) mide el efecto que tiene una observación sobre el conjunto de coeficientes en un modelo lineal. La distancia de Cook considera tanto el valor de apalancamiento como el residuo estandarizado de cada observación para determinar el efecto de la observación.

Interpretación

Las observaciones con una D grande pueden ser consideradas influyentes. Un criterio comúnmente utilizado para un valor D grande es cuando D es mayor que la mediana de la distribución F: F(0.5, p. n-p), donde p es el número de términos del modelo, incluyendo la constante y n es el número de observaciones. Otra manera de examinar los valores D consiste en compararlos entre sí, utilizando una gráfica, como una gráfica de valores individuales. Las observaciones con valores D que sean grandes en comparación con los demás valores podrían ser influyentes.

Las observaciones influyentes tienen un efecto desproporcionado sobre el modelo y pueden generar resultados engañosos. Por ejemplo, la inclusión o exclusión de un punto influyente puede cambiar el hecho de que un coeficiente sea estadísticamente significativo o no. Las observaciones influyentes pueden ser puntos de apalancamiento, valores atípicos o ambos.

Si ve una observación influyente, determine si la observación es un error de entrada de datos o de medición. Si la observación no es un error de entrada de datos ni de medición, determine qué tan influyente es la observación. En primer lugar, ajuste el modelo con y sin la observación. Luego, compare los coeficientes, los valores p, el R2 y otras informaciones del modelo. Si el modelo cambia significativamente al eliminar la observación influyente, examine más a fondo el modelo para determinar si se especificó de forma incorrecta. Es posible que tenga que recopilar más datos para resolver el problema.

Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política