Consideraciones acerca de los datos para Analizar diseño de superficie de respuesta

Para asegurar que los resultados sean válidos, considere las siguientes pautas al recopilar datos, realizar el análisis e interpretar los resultados.

Los datos deben incluir por lo menos 2 factores, que pueden ser continuos o categóricos
Un experimento diseñado en Minitab debe tener por lo menos 2 factores que sean continuos o categóricos.
La variable de respuesta debe ser continua
Si la variable de respuesta es categórica, es menos probable que el modelo cumpla con los supuestos del análisis, que describa con exactitud los datos o que haga predicciones útiles.
Asegúrese de que el sistema de medición produzca datos de respuesta que sean fiables

Si la variabilidad en el sistema de medición es demasiado grande, el experimento puede carecer de la potencia necesaria para encontrar efectos importantes.

Cada observación debe ser independiente de todas las demás observaciones
Si las observaciones individuales son dependientes, los resultados podrían no ser válidos. Considere los siguientes puntos para determinar si las observaciones son independientes:
  • Si una observación no proporciona información sobre el valor de otra observación, las observaciones son independientes.
  • Si una observación proporciona información sobre el valor de otra observación, las observaciones son dependientes.
Las corridas experimentales deben ser aleatorizadas

La aleatorización reduce la probabilidad de que condiciones no controladas creen sesgo en los resultados. La aleatorización también permite estimar la variación inherente de los materiales y las condiciones de manera que se puedan hacer inferencias estadísticas válidas con base en los datos del experimento.

Recolecte los datos utilizando las mejores prácticas
Para asegurar que los resultados sean válidos, considere las siguientes pautas:
  • Asegúrese de que los datos representen a la población de interés.
  • Recolecte suficiente datos para proporcionar la precisión necesaria.
  • Registre los datos en el orden de recolección.
El modelo debe proveer un ajuste adecuado a los datos

Si el modelo no se ajusta a los datos, los resultados pueden ser engañosos. En la salida, utilice las gráficas de residuos, los estadísticos de diagnóstico para observaciones poco comunes y los estadísticos de resumen del modelo para determinar qué tan bien se ajusta el modelo a los datos.

Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política