Datos sobre harina de soya

Un científico que trabaja en un laboratorio de química de los alimentos analiza 60 muestras de harina de soya. Para cada muestra, el científico determina la humedad y contenido de grasa y registra datos del espectro infrarrojo cercano (NIR) a 88 longitudes de onda. El científico selecciona aleatoriamente 54 de las 60 muestras y estima la relación entre las respuestas (humedad y grasa) y los predictores (las 88 longitudes de onda NIR) usando la regresión PLS. El científico utiliza las 6 muestras restantes como un conjunto de datos de prueba para evaluar la capacidad predictiva del modelo.

Puede usar estos datos para hacer una demostración de Regresión de mínimos cuadrados parciales.

Columna de la hoja de trabajo Descripción Tipo de variable
C1-C88 Datos del espectro NIR para 88 longitudes de onda de las 54 muestras. Predictor
Humedad La humedad de cada muestra de harina. Respuesta
Grasa El contenido de grasa de cada muestra de harina. Respuesta
C91-C178 Datos del espectro NIR para 88 longitudes de onda de las 6 muestras utilizadas como conjunto de prueba. Predictor
Humedad2 La humedad de cada muestra de harina del conjunto prueba. Respuesta
Grasa2 El contenido de grasa de cada muestra de harina del conjunto prueba. Respuesta
Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política