We use the Ames housing data to create a Random Forests® Regression model in Minitab.
Model validation | 70/30% training/test sets |
---|---|
Number of bootstrap samples | 300 |
Sample size | Same as training data size of 2047 |
Number of predictors selected for node splitting | Square root of the total number of predictors = 3 |
Minimum internal node size | 5 |
Rows used | 2930 |
Data Set | N | % of N | Mean | StDev | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|---|
Training | 2047 | 69.86 | 179266 | 80159.2 | 12789 | 128500 | 158900 | 213000 | 745000 |
Test | 883 | 30.14 | 184344 | 79182.7 | 13100 | 132000 | 167240 | 216000 | 755000 |
Total predictors | 14 |
---|---|
Important predictors | 14 |
Statistics | Out-of-Bag | Test |
---|---|---|
R-squared | 87.18% | 86.36% |
Root mean squared error (RMSE) | 28688.4432 | 29225.1724 |
Mean squared error (MSE) | 8.23027E+08 | 8.54111E+08 |
Mean absolute deviation (MAD) | 18135.9445 | 18573.7900 |
Mean absolute percent error (MAPE) | 0.1124 | 0.1108 |