
    

WWW.MINITAB.COM  

MINITAB ASSISTANT WHITE PAPER 

This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

2-Sample t-Test 

Overview 
A 2-sample t-test can be used to compare whether two independent groups differ. This test is 

derived under the assumptions that both populations are normally distributed and have equal 

variances. Although the assumption of normality is not critical (Pearson, 1931; Barlett, 1935; 

Geary, 1947), the assumption of equal variances is critical if the sample sizes are markedly 

different (Welch, 1937; Horsnell, 1953). 

Some practitioners first perform a preliminary test to evaluate equal variances before they 

perform the classical 2-sample t procedure. This approach has serious drawbacks, however, 

because these variance tests are subject to important assumptions and limitations. For example, 

many tests for equal variances, such as the classical F-test, are sensitive to departures from 

normality. Other tests that do not rely on the assumption of normality, such as Levene/Brown-

Forsythe, have low power to detect a difference between variances. 

B.L. Welch developed an approximation method for comparing the means of two independent 

normal populations when their variances are not necessarily equal (Welch, 1947). Because 

Welch’s modified t-test is not derived under the assumption of equal variances, it allows users to 

compare the means of two populations without first having to test for equal variances.  

In this paper, we compare Welch’s modified t method with the classical 2-sample t procedure 

and determine which procedure is the most reliable. We also describe the following data checks 

that are automatically performed and displayed in the Assistant Report Card and explain how 

they affect the results of the analysis:  

 Normality 

 Unusual data 

 Sample size 
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2-sample t-test method 

Classical 2- -test 
If data come from two normal populations with the same variances, the classical 2-sample t-test 

is as powerful or more powerful than Welch’s t-test. The normality assumption is not critical for 

the classical procedure (Pearson, 1931; Barlett, 1935; Geary, 1947), but the equal-variance 

assumption is important to ensure valid results. More specifically, the classical procedure is 

sensitive to the assumption of equal variances when the sample sizes differ regardless of how 

large the samples are (Welch, 1937; Horsnell, 1953). In practice, however, the equal variance 

assumption rarely holds true, which can lead to higher Type I error rates. Therefore, if the 

classical 2-sample t-test is used when two samples have different variances, the test is more 

likely to produce incorrect results.  

Welch’s t-test is a viable alternative to the classical t-test because it does not assume equal 

variances and therefore is insensitive to unequal variances for all sample sizes. However, Welch’s 

t-test is approximation-based and its performance in small sample sizes may be questionable. 

We wanted to determine whether Welch’s t-test or the classical 2-sample t-test is the most 

reliable and practical test to use in the Assistant. 

Objective 

We wanted to determine, through simulation studies and theoretical derivations, whether 

Welch’s t-test or the classical 2-sample t-test is more reliable. More specifically, we want to 

examine:  

 The Type I and Type II error rates of both the classical 2-sample t-test and Welch’s t-test 

at various sample sizes when the data are normally distributed and the variances are 

equal. 

 The Type I and Type II error rates of Welch’s t-test for unbalanced and unequal-variance 

designs for which the classical 2-sample t-test fails. 

Method 

Our simulations focused on three areas: 

 We compared simulated test results of the classical 2-sample t-test and Welch’s t-test 

under various model assumptions, including normality, nonnormality, equal variances, 

unequal variances, balanced, and unbalanced designs. For more details, see Appendix A. 

 We derived the power function for Welch’s t-test and compared it with the power 

function of the classical 2-sample t-test. For more details, see Appendix B.  

 We studied the impact of nonnormality on the theoretical power function of Welch’s  

t-test. 
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Results 

When the assumptions for the classical 2-sample t model hold, Welch’s t-test performs as well 

or nearly as well as the classical 2-sample t-test except for small unbalanced designs. However, 

the classical 2-sample t-test may also perform poorly when designs are small and unbalanced, 

due to its sensitivity to the equal variance assumption. Moreover, in practical settings, it is 

difficult to establish that two populations have exactly the same variance. Therefore, the 

theoretical superiority of the classical 2-sample test over Welch’s t-test has a little or no practical 

value. For this reason, the Assistant uses Welch’s t-test to compare the means of two 

populations. For the detailed simulation results, see Appendices A, B, and C. 
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Data checks 

Normality 
Welch’s t-test, the method used in the Assistant to compare the means of two independent 

populations, is derived under the assumption that the populations are normally distributed. 

Fortunately, even when data are not normally distributed, Welch’s t-test works well if the 

samples are large enough.  

Objective 

We wanted to determine how closely the simulated levels of significance for the Welch method 

and the classical 2-sample t-test matched the target level of significance (Type I error rate) of 

0.05.  

Method 

We performed simulations of Welch’s t-test and the classical 2-sample t-test on 10,000 pairs of 

independent samples generated from normal, skewed, and contaminated normal (equal and 

unequal variances) populations. The samples were of various sizes. The normal population 

serves as a control population for comparison purposes. For each condition, we calculated the 

simulated significance levels and compared them with the target, or nominal, significance level 

of 0.05. If the test performs well, the simulated significance levels should be close to 0.05. 

Results 

For moderate or large samples, Welch’s t-test maintains its Type I error rates for normal as well 

as nonnormal data. The simulated significance levels are close to the targeted significance level 

when both sample sizes are at least 15. See Appendix A for more details. 

Because the test performs well with relatively small samples, the Assistant does not test the data 

for normality. Instead, it checks the size of the samples and displays the following status 

indicators in the Report Card: 

Status Condition 

 

Both sample sizes are at least 15; normality is not an issue. 

 

At least one of the sample sizes < 15; normality may be an issue. 
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Unusual data 
Unusual data are extremely large or small data values, also known as outliers. Unusual data can 

have a strong influence on the results of the analysis. When the sample is small, they can affect 

the chances of finding statistically significant results. Unusual data can indicate problems with 

data collection or unusual behavior of a process. Therefore, these data points are often worth 

investigating and should be corrected when possible.  

Objective 

We wanted to develop a method to check for data values that are very large or very small 

relative to the overall sample and that may affect the results of the analysis  

Method 

We developed a method to check for unusual data based on the method described by Hoaglin, 

Iglewicz, and Tukey (1986) to identify outliers in boxplots.  

Results 

The Assistant identifies a data point as unusual if it is more than 1.5 times the interquartile range 

beyond the lower or upper quartile of the distribution. The lower and upper quartiles are the 

25th and 75th percentiles of the data. The interquartile range is the difference between the two 

quartiles. This method works well even when there are multiple outliers because it makes it 

possible to detect each specific outlier. 

Outliers tend to have an influence on the power function only when the sample sizes are very 

small. In general, when outliers are present the observed power values tend to be a bit higher 

than the targeted theoretical power values. This pattern can be seen in Figure 10 in Appendix C 

where the simulated and theoretical power curves are not reasonably close until the minimum 

sample size reaches 15. 

When checking for unusual data, the Assistant Report Card for the 2-sample t-test displays the 

following status indicators: 

 

Status Condition 

 

There are no unusual data points.  

 

At least one data point is unusual and may affect the test results.  
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Sample size 
Typically, a hypothesis test is performed to gather evidence to reject the null hypothesis of “no 

difference”. If the samples are too small, the power of the test may not be adequate to detect a 

difference between the means when one actually exists, which results in a Type II error. It is 

therefore crucial to ensure that the sample sizes are sufficiently large to detect practically 

important differences with high probability.  

Objective 

If the current data does not provide sufficient evidence against the null hypothesis, we want to 

determine if the sample sizes are large enough for the test to detect practical differences of 

interest with high probability. Although the objective of sample size planning is to ensure that 

the samples are large enough to detect important differences with high probability, the samples 

should not be so large that meaningless differences become statistically significant with high 

probability.  

Method 

The power and sample size analysis is based upon the theoretical power function of the specific 

test that is used to perform the statistical analysis. For the Welch t-test, this power function 

depends upon the sample sizes, the difference between the two population means, and the true 

variances of the two populations. For more details, see Appendix B.  

Results 

When the data does not provide enough evidence against the null hypothesis, the Assistant 

calculates practical differences that can be detected with an 80% and a 90% probability for the 

given sample sizes. In addition, if the user provides a practical difference of interest, the 

Assistant calculates the sample sizes that yield an 80% and a 90% chance of detecting the 

difference. 

There is no general result to report because the results depend on the user’s specific samples. 

However, you can refer to Appendices B and C for more information about Welch’s test power 

function. 

When checking for power and sample size, the Assistant Report Card for the 2-sample t-test 

displays the following status indicators: 

 

Status Condition 

 

The test finds a difference between the means, so power is not an issue. 

OR 

Power is sufficient. The test did not find a difference between the means, but the sample is large 
enough to provide at least a 90% chance of detecting the given difference. 
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Status Condition 

 

Power may be sufficient. The test did not find a difference between the means, but the sample is 
large enough to provide an 80% to 90% chance of detecting the given difference. The sample size 
required to achieve 90% power is reported. 

 

Power might not be sufficient. The test did not find a difference between the means, and the 
sample is large enough to provide a 60% to 80% chance of detecting the given difference. The 
sample sizes required to achieve 80% power and 90% power are reported. 

 

The power is not sufficient. The test did not find a difference between the means, and the sample is 
not large enough to provide at least a 60% chance of detecting the given difference. The sample 
sizes required to achieve 80% power and 90% power are reported. 

 

The test did not find a difference between the means. You did not specify a practical difference 
between the means to detect; therefore, the report indicates the differences that you could detect 
with 80% and 90% chance, based on your sample sizes, standard deviations, and alpha. 
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Appendix A: Impact of nonnormality 
and heterogeneity on the classical  
2-sample t-test and the Welch t-test 
We conducted several simulation studies designed to compare the classical 2-sample t-test and 

the Welch’s t-test under different model assumptions. 

Simulation study A 
We performed the study in three parts: 

 In the first part of the study, we explored the sensitivity of the classical 2-sample t-test 

and Welch’s t-test to the assumption of equal variance when the normality assumption 

holds true. Two samples were generated from two independent normal populations. The 

first sample, the base sample, was drawn from a normal population with mean 0 and 

standard deviation 𝜎1 = 2, 𝑁(0,2). The second sample was also drawn from a normal 

population with mean 0, but with the standard deviation 𝜎2 chosen so that the ratio 𝜌 =

𝜎2/𝜎1 0.5, 1.0, 1.5 and 2. In other words, the second samples were drawn from the 

populations 𝑁(0, 1), 𝑁(0, 2), 𝑁(0, 3), and 𝑁(0, 4), respectively. In addition, the base 

sample size in each case was fixed at 𝑛1 = 5, 10, 15, 20 and for each given 𝑛1, the second 

sample size, 𝑛2, was chosen so that the ratio of sample sizes, 𝑟 = 𝑛2/𝑛1,was 

approximately equal to 0.5, 1, 1.5, and 2.0. 

For each of these 2-sample designs, we generated 10,000 pairs of independent samples 

from the respective populations. Then we performed the classical 2-sample  

t-test and Welch’s t-test on each of the 10,000 pairs of samples to test the null 

hypothesis of no difference between the means. Because the true difference between the 

means is null, the fraction of the 10,000 replicates for which the null hypothesis is 

rejected represents the simulated level of significance of the test. Because the targeted 

significance level for each of the tests is 𝛼 = 0.05, the simulation error associated with 

each test and each experiment is about 0.2%. 

 In the second part, we investigated the impact of nonnormality, specifically skewness, on 

the simulated significance levels of the two tests. This simulation was set up the same 

way as the previous simulation except that the base sample was drawn from the chi-

squared distribution with 2 degrees of freedom, Chi(2) and the second samples were 

drawn from other chi-square distributions so that ρ = σ2/σ1 takes on the values 0.5, 1.0, 

1.5 and 2. The hypothesized difference between the means was set to be the true 

difference between the means of the parent populations. 

 In the third part, we examined the effect of outliers on the performance of the two t-

tests. For this reason, the two samples were drawn from contaminated normal 
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distributions. A contaminated normal population CN(p, σ) is a mixture of two normal 

populations: the N(0,1) population and the normal N(0, σ) population. We define a 

contaminated normal distribution as: 

𝐶𝑁(𝑝, 𝜎) = 𝑝𝑁(0,1) + (1 − 𝑝)𝑁(0, 𝜎) 

where p is the mixing parameter and 1 − p is the proportion of contamination or proportion of 

outliers. It is easy to show that if X is distributed as 𝐶𝑁(𝑝, 𝜎) then its mean is 𝜇𝑋 = 0 and its 

standard deviation is 𝜎𝑋 = √𝑝 + (1 − 𝑝)𝜎2. 

The base sample was drawn from 𝐶𝑁(. 8, 4) and the second sample was drawn from the 

contaminated normal 𝐶𝑁(. 8, 𝜎). The parameter 𝜎 was chosen so that the ratio of the standard 

deviations of the two (contaminated) populations 𝜌 = 𝜎2/𝜎1 equals 0.5, 1.0, 1.5 and 2, just like in 

parts I and II. Because 𝜎1 = √. 8 + (1 − .8) ∗ 16 = 2.0, this results in choosing 𝜎 = 1, 4, 6.40, 8.72, 

respectively. In other words, the second samples were drawn from 𝐶𝑁(. 8, 1), 𝐶𝑁(. 8, 4), 

𝐶𝑁(. 8, 6.4), and 𝐶𝑁(. 8, 8.72). We then performed the simulations as described in Part I. 

The results of the study are organized in Table 1 and displayed in Figures 1, 2, and 3. 

Results and summary 

In general, the simulation results support the theoretical results that under the assumption of 

normality and equal variances, the classical 2-sample t-test yields significance levels that are 

close to the targeted level even when the sample sizes are small. The second column of plots in 

Figure 1 displays the simulated significance levels in designs where the variances of the two 

normal populations are equal. The simulated significance levels curves based on the classical  

2-sample t-test are undistinguishable from the targeted level lines.  

The tables below show the simulated significance levels of two-sided tests for both the classical 

2-sample t-test and Welch’s t-test, each with α = 0.05 based on pairs of samples generated 

from normal population, skewed populations (Chi-square), and contaminated normal 

populations. The pairs of samples are from the same family of distribution but the variances of 

the respective parent populations are not necessarily equal. 

Table 1  Simulated significance levels of two-sided tests (classical 2-sample t-test and Welch’s  

t-test, each with α = 0.05) for n = 5. 

   Base Pop.: N(0,2) 

2nd Pop: N(0,  𝝈𝟐) 

Base Population: Chi(2) 

2nd Pop: Chi-square 

Base Pop.: CN(.8,4) 

2nd Pop.: CN(.8,  𝝈) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
 Meth. 𝒏𝟏 = 𝟓 𝒏𝟏 = 𝟓 𝒏𝟏 = 𝟓 

3 .6 2T .035 .050 .079 .105 .058 .042 .078 .113 .031 .036 .035 .034 

Welch .035 .039 .049 .055 .048 .029 .055 .063 .029 .024 .021 .020 
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   Base Pop.: N(0,2) 

2nd Pop: N(0,  𝝈𝟐) 

Base Population: Chi(2) 

2nd Pop: Chi-square 

Base Pop.: CN(.8,4) 

2nd Pop.: CN(.8,  𝝈) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
 Meth. 𝒏𝟏 = 𝟓 𝒏𝟏 = 𝟓 𝒏𝟏 = 𝟓 

5 1.0 2T .061 .052 .054 .058 .086 .036 .054 .064 .035 .031 .025 .023 

Welch .048 .042 .044 .047 .066 .021 .040 .050 .027 .023 .018 .016 

8 1.6 2T .096 .048 .033 .027 .133 .041 .033 .032 .059 .037 .029 .024 

Welch .050 .045 .043 .042 .094 .034 .032 .041 .034 .029 .026 .022 

10 2.0 2T .118 .055 .034 .025 .139 .041 .028 .024 .073 .041 .028 .023 

Welch .052 .051 .050 .051 .097 .041 .033 .042 .035 .032 .028 .025 

 

Table 2  Simulated significance levels of two-sided tests (classical 2-sample t-test and Welch’s  

t-test, each with α = 0.05) for n = 10 

   Base Pop.: N(0,2) 

2nd Pop: N(0,  𝝈𝟐) 

Base Population: Chi(2) 

2nd Pop: Chi-square 

Base Pop.: CN(.8,4) 

2nd Pop.: CN(.8,  𝝈) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
 Meth. 𝒏𝟏 = 𝟏𝟎 𝒏𝟏 = 𝟏𝟎 𝒏𝟏 = 𝟏𝟎 

5 .5 2T .020 .050 .081 .112 .039 .044 .091 .123 .021 .035 .045 .047 

Welch .046 .048 .050 .050 .043 .047 .067 .063 .034 .028 .022 .019 

10 1.0 2T .057 .051 .053 .055 .068 .044 .053 .054 .043 .042 .037 .032 

Welch .051 .049 .049 .049 .062 .037 .046 .049 .039 .038 .032 .027 

15 1.5 2T .088 .048 .034 .029 .100 .043 .032 .032 .064 .040 .028 .021 

Welch .050 .048 .047 .048 .074 .044 .041 .046 .035 .037 .035 .031 

20 2 2T .110 .048 .026 .019 .133 .042 .026 .022 .093 .046 .029 .019 

Welch .048 .047 .045 .046 .083 .050 .044 .049 .036 .039 .040 .038 
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Table 3  Simulated significance levels of two-sided tests (classical 2-sample t-test and Welch’s  

t-test, each with α = 0.05) for n = 15 

   𝐁𝐚𝐬𝐞 𝐏𝐨𝐩. : 𝐍(𝟎, 𝟐) 

𝟐𝐧𝐝 𝐏𝐨𝐩: 𝐍(𝟎, 𝛔𝟐) 

𝐁𝐚𝐬𝐞 𝐏𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧: 𝐂𝐡𝐢(𝟐) 

𝟐𝐧𝐝 𝐏𝐨𝐩: 𝐂𝐡𝐢 − 𝐬𝐪𝐮𝐚𝐫𝐞 

𝐁𝐚𝐬𝐞 𝐏𝐨𝐩. : 𝐂𝐍(. 𝟖, 𝟒) 

𝟐𝐧𝐝 𝐏𝐨𝐩. : 𝐂𝐍(. 𝟖, 𝛔) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
 Meth. 𝒏𝟏 = 𝟏𝟓 𝒏𝟏 = 𝟏𝟓 𝒏𝟏 = 𝟏𝟓 

8 .53 2T .021 .050 .083 .110 .036 .041 .089 .114 .022 .044 .056 .062 

Welch .050 .051 .051 .050 .047 .049 .067 .062 .044 .036 .027 .022 

15 1.0 2T .049 .047 .050 .053 .064 .046 .051 .061 .045 .045 .041 .037 

Welch .045 .046 .049 .048 .060 .042 .048 .057 .042 .043 .039 .033 

23 1.53 2T .081 .049 .033 .028 .103 .042 .036 .030 .075 .048 .033 .024 

Welch .048 .049 .048 .050 .071 .042 .048 .050 .042 .045 .044 .041 

30 2.0 2T .111 .050 .028 .018 .123 .049 .027 .020 .100 .046 .025 .016 

Welch .049 .051 .051 .053 .074 .056 .045 .047 .039 .044 .042 .040 

 

Table 4  Simulated significance levels of two-sided tests (classical 2-sample t-test and Welch’s  

t-test, each with α = 0.05) for n = 20 

   𝑩𝒂𝒔𝒆 𝑷𝒐𝒑. : 𝑵(𝟎, 𝟐) 

𝟐𝒏𝒅 𝑷𝒐𝒑: 𝑵(𝟎, 𝝈𝟐) 

𝑩𝒂𝒔𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏: 𝑪𝒉𝒊(𝟐) 

𝟐𝒏𝒅 𝑷𝒐𝒑: 𝑪𝒉𝒊 − 𝒔𝒒𝒖𝒂𝒓𝒆 

𝑩𝒂𝒔𝒆 𝑷𝒐𝒑. : 𝑪𝑵(. 𝟖, 𝟒) 

𝟐𝒏𝒅 𝑷𝒐𝒑. : 𝑪𝑵(. 𝟖, 𝝈) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
 Meth. 𝒏𝟏 = 𝟐𝟎 𝒏𝟏 = 𝟐𝟎 𝒏𝟏 = 𝟐𝟎 

10 .5 2T .019 .052 .087 .115 .028 .048 .087 .119 .021 .048 .067 .079 

Welch .050 .054 .053 .053 .044 .054 .061 .061 .048 .042 .035 .028 

20 1.0 2T .048 .049 .052 .053 .057 .046 .052 .056 .049 .044 .042 .040 

Welch .045 .049 .051 .050 .055 .044 .050 .052 .047 .042 .040 .037 
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   𝑩𝒂𝒔𝒆 𝑷𝒐𝒑. : 𝑵(𝟎, 𝟐) 

𝟐𝒏𝒅 𝑷𝒐𝒑: 𝑵(𝟎, 𝝈𝟐) 

𝑩𝒂𝒔𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏: 𝑪𝒉𝒊(𝟐) 

𝟐𝒏𝒅 𝑷𝒐𝒑: 𝑪𝒉𝒊 − 𝒔𝒒𝒖𝒂𝒓𝒆 

𝑩𝒂𝒔𝒆 𝑷𝒐𝒑. : 𝑪𝑵(. 𝟖, 𝟒) 

𝟐𝒏𝒅 𝑷𝒐𝒑. : 𝑪𝑵(. 𝟖, 𝝈) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
 Meth. 𝒏𝟏 = 𝟐𝟎 𝒏𝟏 = 𝟐𝟎 𝒏𝟏 = 𝟐𝟎 

30 1.5 2T .086 .054 .039 .032 .098 .047 .035 .033 .075 .047 .033 .022 

Welch .054 .054 .053 .052 .068 .047 .051 .053 .041 .043 .044 .042 

40 2.0 2T .107 .049 .026 .016 .123 .046 .027 .019 .107 .047 .026 .016 

Welch .048 .049 .046 .047 .070 .054 .046 .045 .044 .043 .043 .042 

 

 

Figure 1  Simulated significance levels of two-sided tests (classical 2-sample t-test and Welch’s 

t-test, each with 𝛼 = 0.05) based on pairs of samples generated from two normal populations 

with equal or unequal variances plotted against ratio of sample sizes.  

The simulation results show that for relatively small samples the classical 2-sample t-test is 

robust against non-normality but is sensitive to the assumption of equal variances, unless the 

two-sample design is nearly balanced. This is graphically shown in Figures 1, 2, and 3. The 

simulated significance level curves based on the classical 2-sample t-test cross the targeted level 
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line at the point where the ratio of sample sizes is 1.0, even when the variances are very 

different. For all three families of distributions (normal, chi-square, and contaminated normal 

populations), if the sample sizes are different, the simulated significance levels of the classical  

2-sample t-test are near the targeted level only when the variances are equal. This is depicted 

on the second column of plots in each of the figures 1, 2, and 3.  

The performance of the classical t-test is undesirable when the design is unbalanced and the 

variances are unequal. Even small disparities between the variances are troublesome. For those 

unequal-variance, unbalanced designs, normality of the data does not improve the simulated 

significance levels. In fact, the simulated significance levels fall away from the targeted level as 

the sample sizes increase regardless of the parent population. When the larger sample is drawn 

from the population with larger variance, the simulated significance levels are smaller than the 

targeted level. When the larger samples are drawn from the population with smaller variance, 

the simulated levels are larger than the targeted levels. Arnold (1990, page 372) makes a similar 

remark when examining the asymptotic distribution of the classical 2-sample t-test statistic 

under the unequal-variance assumption. 

The Welch 2-sample t-test, on the other hand, is impervious to departures from the equal-

variance assumption, as illustrated in Figures 1, 2, and 3. This is not surprising since the Welch  

t-test is not derived under the assumption of equal variances. The normal assumption from 

which Welch’s t-test is derived appears to be important only when the minimum of the two 

samples sizes is very small. For larger samples, however, the test becomes immune to departures 

from the normality assumption. This is illustrated in Figures 2 and 3 where the simulated 

significance levels remain consistently close to the targeted level when the minimum size of the 

two samples is 15. When both samples are generated from the chi-square distribution with 2 

degrees of freedom and the size of both samples is 15, the simulated significance level is 0.042 

(see Table 3).  

Outliers also do not appear to affect the performance of Welch’s t-test when the minimum size 

of the two samples is large enough. Table 3 and Figure 3 show that when the minimum size of 

the two samples is at least 15, then the simulated significance levels are near the targeted level 

(the simulated significance levels are 0.045, 0.045, 0.041, 0.037 when the ratio of standard 

deviations are 0.5, 1.0, 1.5 and 2.0 respectively). 

These results show that for most practical purposes, the Welch 2-sample t-test performs better 

than the classical 2-sample t-test in terms of its simulated significance levels or Type I error rate.  
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Figure 2  Simulated significance levels of two-sided tests (classical 2-sample t-test and Welch  

t-test) based on pairs of samples generated from two normal populations with equal or unequal 

variances plotted against ratio of sample sizes.  
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Figure 3  Simulated significance levels of two-sided tests (classical 2-sample t-test and Welch  

t-test) based on pairs of samples generated from two normal populations with equal or unequal 

variances plotted against ratio of sample sizes.  



 

2-SAMPLE t-TEST 17 

Appendix B: Comparison of the 
power functions of the two tests 
We wanted to determine the conditions under which power function for Welch’s t-test may be 

equal or approximately equal to the power function for the classical 2-sample t-test.  

In general, the power functions of t-tests (1-sample or 2-sample) are well known and discussed 

in many publications (Pearson and Hartley, 1952; Neyman et al., 1935; Srivastava, 1958). The 

following theorem states the power function for each of the three different alternative 

hypotheses in two-sample designs. 

THEOREM B1 

Under the assumptions of normality and the equality of variances, the power function of a  

two-sided two-sample t-test which has nominal size 𝛼 may be expressed as a function of the 

sample sizes and the difference 𝛿 = 𝜇1 − 𝜇2 as 

𝜋(𝑛1, 𝑛2, 𝛿) = 1 − 𝐹𝑑𝐶,𝜆 (𝑡𝑑𝐶

𝛼/2
) + 𝐹𝑑𝐶,𝜆 (−𝑡𝑑𝐶

𝛼/2
) 

where 𝐹𝑑𝐶,𝜆(. ) is the C.D.F of the non-central t distribution with 𝑑𝐶 = 𝑛1 + 𝑛2 − 2 degrees of 

freedom and non-centrality parameter 

𝜆 =
𝛿

𝜎√1/𝑛1 + 1/𝑛2

 

Moreover, the power function associated with the alternative hypothesis 𝜇1 > 𝜇2 is given as  

𝜋(𝑛1, 𝑛2, 𝛿) = 1 − 𝐹𝑑𝐶,𝜆(𝑡𝑑𝐶

𝛼 ) 

On the other hand, when testing against the alternative 𝜇1 < 𝜇2 the power is expressed as 

𝜋(𝑛1, 𝑛2, 𝛿) = 𝐹𝑑𝐶,𝜆(−𝑡𝑑𝐶

𝛼 ) 

Although the result in the above theorem is well known, the power function of the test based 

upon Welch’s modified t-test has not been specifically discussed in the literature. An 

approximation can be deduced from the approximate power function given for the one-way 

ANOVA model (see Kulinskaya et. al, 2003). Unfortunately, this power function is only applicable 

to two-sided alternatives. However, the two-sample design is such a special case that a different 

approach can be adopted to obtain the (exact) power function of Welch’s t-test for each of the 

three alternatives. These functions are given in the following theorem. 

THEOREM B2 

Under the assumption that the populations are normally distributed (but not necessarily with 

the same variance), the power function a two-sided Welch’s t-test which has nominal size 𝛼 may 

be expressed as a function of the sample sizes and the difference 𝛿 = 𝜇1 − 𝜇2 as 

𝜋𝑊(𝑛1, 𝑛2, 𝛿) = 1 − 𝐺𝑑𝑊,𝜆𝑊
(𝑡𝑑𝑊

𝛼/2
) + 𝐺𝑑𝑊,𝜆𝑊

(−𝑡𝑑𝑊

𝛼/2
) 
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where 𝐺𝑑,𝜆(. ) is the C.D.F of the non-central t distribution with 𝑑𝑊 degrees of freedom given as 

𝑑𝑊 =
(

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2
)

2

𝜎1
4

𝑛1
2(𝑛1 − 1)

+
𝜎2

4

𝑛2
2(𝑛2 − 1)

 

and non-centrality parameter  

𝜆𝑊 =
𝛿

√𝜎1
2/𝑛1 + 𝜎2

2/𝑛2

 

For the one-sided alternatives, the power functions are given as 

𝜋𝑊(𝑛1, 𝑛2, 𝛿) = 1 − 𝐺𝑑𝑊,𝜆𝑊
(𝑡𝑑𝑊

𝛼 ) 

and 

𝜋𝑊(𝑛1, 𝑛2, 𝛿) = 𝐺𝑑𝑊,𝜆𝑊
(−𝑡𝑑𝑊

𝛼 ) 

for testing the null hypothesis against the alternative 𝜇1 > 𝜇2and for testing null hypothesis 

against the alternative 𝜇1 < 𝜇2, respectively. 

The proof of the result is given in Appendix D.  

Before we compare these two power functions, note that because the classical 2-sample t-test is 

derived under the additional assumption that the variances of the populations are equal, the 

theoretical power functions of the two tests should be compared when this second assumption 

holds for Welch’s t-test.   

In theory, we know that under the normality and equal variances assumptions, 

𝜋(𝑛1, 𝑛2, 𝛿) ≥ 𝜋𝑊(𝑛1, 𝑛2, 𝛿) for all 𝑛1, 𝑛2, 𝛿 

The next result states conditions under which the two functions are (approximately) equal. 

THEOREM B3 

Under the assumptions of normality and equality of variances we have the following: 

1. If 𝑛1~𝑛2 then 𝜋(𝑛1, 𝑛2, 𝛿)~𝜋𝑊(𝑛1, 𝑛2, 𝛿) for each difference 𝛿. In particular, if 𝑛1 = 𝑛2 

then 𝜋(𝑛1, 𝑛2, 𝛿) = 𝜋𝑊(𝑛1, 𝑛2, 𝛿) for each difference 𝛿, so that the Welch t-test is as 

powerful as the classical 2-sample t-test. 

2. If 𝑛1and 𝑛2are small and 𝑛1 ≠ 𝑛2then Welch’s t-test has less power than the classical 2-

sample t-test. However, if 𝑛1and 𝑛2 are large then 𝜋(𝑛1, 𝑛2, 𝛿)~𝜋𝑊(𝑛1, 𝑛2, 𝛿) (regardless 

of the difference between the sample sizes).  

The proof of the result is provided in Appendix E.  

Under the assumption of equality of variances, the non-centrality parameters associated with 

the power functions of the two tests are identical. The difference between the power functions 

can only be attributed to the difference between their respective degrees of freedom. From 

theory, we know that under the stated assumptions the classical t-test is UMP (uniformly most 
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powerful) and therefore it has higher degrees of freedom. The point of the above results, 

however, is that if the design is balanced or approximately balanced then the power functions 

are identical or approximately identical. The only case where the classical t-test is noticeably 

more powerful than the Welch t-test is when the design is markedly unbalanced and the 

samples are small. Unfortunately, that also happens to be the case where the classical 2-sample 

t-test is particularly sensitive to the assumption of equal variance as shown in Appendix A. As a 

result, Welch’s t-test power function is the more reliable function for practical purposes. 

We illustrate the results of Theorem B3 through the following example where the two normal 

populations have the same standard deviation of 3. Power values based on the (two-sided)  

power functions of Theorem B1 and Theorem B2 are calculated under the following four 

scenarios: 

1. Both samples are small but have the same size (𝑛1 = 𝑛2 = 10). 

2. Both samples are small but one sample is two times larger than the other sample  

( 𝑛1 = 10, 𝑛2 = 20). 

3. One sample is small and the other sample is moderate in size but the moderate sample 

is four times larger than the smaller sample (𝑛1 = 10, 𝑛2 = 40). 

4. One sample is moderate in size and the other is large but the larger sample is four times 

larger than the moderate sample (𝑛1 = 50, 𝑛2 = 200).  

Assuming that 𝛼 = 0.05 for both tests, the power functions are evaluated in each scenario at the 

difference 𝛿 = 0.0, 0.5, 1.0, 1.5, 2.0, … 5.0. The results are displayed in Table 5 and the functions 

are plotted in Figure 4. 

Table 5  Comparison of the theoretical power functions of two-sided classical 2-sample t-tests 

and two-sided Welch t-tests, 𝛼 = 0.05. The sample sizes, 𝑛1 and 𝑛2, are fixed and the power 

functions are evaluated at differences 𝛿 ranging from 0.0 to 5.0. 

𝜹 0.0 0.5 1.0 1.5 2.0 2.5 3 3.5 4 4.5 5.0 

𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎 

𝝅(𝒏𝟏, 𝒏𝟐, 𝜹) .05 .064 .109 .185 .292 .422 .562 .694 .805 .887 .941 

𝝅𝑾(𝒏𝟏, 𝒏𝟐, 𝜹) .05 .064 .109 .185 .292 .422 .562 .694 .805 .887 .941 

𝒏𝟏 = 𝟏𝟎, 𝒏𝟐 = 𝟐𝟎 

𝝅(𝒏𝟏, 𝒏𝟐, 𝜹) .05 .070 .132 .239 .383 .547 .703 .828 .913 .962 .986 

𝝅𝑾(𝒏𝟏, 𝒏𝟐, 𝜹) .05 .070 .129 .231 .371 .531 .686 .813 .902 .955 .982 

𝒏𝟏 = 𝟏𝟎, 𝒏𝟐 = 𝟒𝟎 

𝝅(𝒏𝟏, 𝒏𝟐, 𝜹) .05 .075 .152 .283 .455 .637 .791 .899 .959 .986 .996 

𝝅𝑾(𝒏𝟏, 𝒏𝟐, 𝜹) .05 .072 .142 .261 .419 .592 .748 .865 .938 .976 .992 
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𝜹 0.0 0.5 1.0 1.5 2.0 2.5 3 3.5 4 4.5 5.0 

𝒏𝟏 = 𝟓𝟎, 𝒏𝟐 = 𝟐𝟎𝟎 

𝝅(𝒏𝟏, 𝒏𝟐, 𝜹) .05 .182 .556 .883 .987 .999 1. 1. 1. 1. 1. 

𝝅𝑾(𝒏𝟏, 𝒏𝟐, 𝜹) .05 .180 .548 .877 .986 .999 1. 1. 1. 1. 1. 

 

 

 

Figure 4  Plots of theoretical power functions of two-sided classical 2-sample t-tests and  

two-sided Welch’s t-tests versus 𝛿 the difference between the means to be detected. Both tests 

use 𝛼 = 0.05. The assumed populations are normal with same standard deviation of 3. 

Simulation study B 
The purpose of this simulation study is to compare power levels associated with the classical  

2-sample t-test to power levels associated with Welch’s 2-sample t-test in balanced designs 

where the variances are assumed to be unequal. The experiments in these studies are similar to 

discussed in Appendix A.  

In the first group of experiments, we generated pairs of sample of equal sizes from the normal 

populations with unequal variances. The base population was fixed to be 𝑁(0,2) and the second 

normal populations were chosen such the ratio of standard deviations 𝜌 = 𝜎2/𝜎1 equals 0.5, 1.5 

and 2. Similarly, in a second group, the two samples were drawn from chi-square distributions 

with unequal variances (base population is Chi(2)). In the last set of experiments the pairs of 
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samples were generated from the contaminated normal distribution (base population CN(.8,4)) 

as previously defined in Appendix A. 

For each set of experiments, we calculated the simulated power levels (at a given detectable 

difference 𝛿) associated with each test for the sample sizes 𝑛 = 𝑛1 = 𝑛2 = 5, 10, 15, 20, 25, 30. In 

each experiment, the simulated power level was calculated as the proportion of instances when 

the null hypothesis was rejected when it was false. For all the experiments, the difference 

between the means was specified in one unit of the standard in the base population (the first of 

the two samples). More specifically, we fixed 𝛿 = 1.0 × 𝜎1 = 2.0 because it is relatively small for 

all three families of distributions in this study. The simulations results are reported in Table 2.2 

and displayed in Figure 2.2a, Figure 2.2b and Figure 2.2c. 

Results and summary 

The results in Table 6 and Figure 4 show that under the equal-variance assumptions the 

theoretical power functions are identical in balanced designs, as indicated in Theorem 2.3. In 

addition, when the sample sizes are relatively small but nearly the same size, the two functions 

yield power values that are approximately equal. It is only when the samples are relatively small 

and one sample is about four times larger than the other sample that some noticeable 

differences between the power functions begin to emerge (for example, when 𝑛1 = 10, 𝑛2 = 40). 

Even in this case the theoretical power values based on the classical 2-sample t-test are only 

slightly higher than the power values based on Welch’s t-test. Finally, when the designs are 

markedly unbalanced but the samples are (relatively) large, the two power functions are 

essentially identical, as stated in Theorem B3. 

Moreover, in balanced designs with unequal variances, the two tests yield power values that are 

practically identical. In very small samples (𝑛 < 10), however, the classical 2-sample t-test 

performs slightly better. 

Table 6  Comparison of simulated power levels of the classical 2-sample t-test and Welch’s test 

in balanced and unequal-variance designs 

  Base Population: 
N(0,2) 

Base Population: 
Chi(2) 

Base Population: 
CN(.8,4) 

𝑛 𝜎2

𝜎1
 .5 1.5 2.0 .5 1.5 2.0 .5 1.5 2.0 

5 2T 0.431 0.196 0.152 0.555 0.281 0.215 0.579 0.373 0.335 

Welch 0.366 0.166 0.119 0.424 0.250 0.184 0.521 0.320 0.283 

10 2T 0.770 0.385 0.270 0.846 0.438 0.324 0.790 0.510 0.435 

Welch 0.747 0.372 0.253 0.832 0.427 0.308 0.776 0.493 0.417 

15 2T 0.916 0.539 0.387 0.948 0.565 0.424 0.898 0.615 0.508 

Welch 0.908 0.532 0.375 0.945 0.557 0.413 0.891 0.605 0.497 
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  Base Population: 
N(0,2) 

Base Population: 
Chi(2) 

Base Population: 
CN(.8,4) 

20 2T 0.971 0.682 0.497 0.982 0.680 0.521 0.952 0.702 0.573 

Welch 0.969 0.677 0.487 0.981 0.676 0.511 0.947 0.697 0.563 

25 2T 0.990 0.779 0.591 0.994 0.765 0.605 0.980 0.783 0.641 

Welch 0.990 0.777 0.582 0.994 0.762 0.597 0.979 0.778 0.636 

30 2T 0.998 0.851 0.675 0.998 0.826 0.676 0.994 0.839 0.699 

Welch 0.998 0.849 0.670 0.998 0.824 0.668 0.994 0.836 0.694 

 

 

Figure 5  Comparison of simulated power levels of the classical 2-sample t-test and Welch’s  

2-sample t-test in balanced and unequal-variance designs. Samples were drawn from unequal-

variance normal populations such that the ratio of standard deviations is 0.5, 1.5 and 2.0. 
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Figure 6  Comparison of simulated power levels of the classical 2-sample t-test and Welch’s  

2-sample t-test in balanced and unequal-variance designs. Samples were drawn from unequal-

variance chi-square populations such that the ratio of standard deviations is 0.5, 1.5 and 2.0. 
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Figure 7  Comparison of simulated power levels of the classical 2-sample t-test and Welch’s  

2-sample t-test in balanced and unequal-variance designs. Samples were drawn from unequal-

variance contaminated normal populations such that the ratio of standard deviations is 0.5, 1.5 

and 2.0. 
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Appendix C: Power and sample size 
and sensitivity to normality 
In the Assistant, the power analysis for comparing the means of two populations is based upon 

the power function of the Welch t-test. Should this function be sensitive to the normal 

assumption under which it is derived, the power analysis may yield erroneous conclusions. For 

this reason, we conducted a simulation study to examine the sensitivity of this function to the 

normal assumption. Sensitivity is assessed as the consistency between simulated power levels 

and power levels calculated from the theoretical power function when samples are generated 

from nonnormal distributions. The normal distribution serves as the control population because, 

according to Theorem B2, simulated power levels and theoretical power levels are closest when 

samples are generated from the normal populations.  

Simulation study C 
The study is conducted in three parts using three distributions: normal, chi-square, and the 

contaminated normal distribution. Refer to Appendix A for more details. For each part of the 

study, the simulated power is calculated (for the given sample sizes n1 and n2 at a given 

detectable difference δ) as the proportion of instances when the null hypothesis was rejected 

when it was false. In all the cases the difference to be detected is specified in one unit of the 

standard in the base population. That is δ = 1.0 × σ1 = 2.0 for all three families of distributions 

in this study. The theoretical power values based on Welch’s t-test are calculated as well for 

comparison. 

Simulation results and summary 
The results show that for relatively small sample sizes the power function of the Welch t-test is 

robust against the normality assumption. In general, when the minimum size of the two samples 

is as low as 15, the simulated power values are near their corresponding targeted theoretical 

power levels (see Tables 7-10 and Figures 8-10). 

Tables 7-10 show the simulated power levels of a two-sided Welch t-test with 𝛼 = 0.05 based on 

pairs of samples generated from normal population, skew populations (chi-square), and 

contaminated normal populations. The pairs of samples are from the same family of distribution 

but the variances of the parent populations are not necessarily equal. The theoretical power 

values were calculated for comparison. 
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Table 7  Simulated power levels of a two-sided Welch t-test with 𝛼 = 0.05 for n=5 

   Base Population: N(0,2)  Base Population: Chi(2)  Base Population: 
CN(.8,4) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
  𝒏𝟏 = 𝟓 𝒏𝟏 = 𝟓 𝒏𝟏 = 𝟓 

3 .6 Obs. .288 .158 .113 .091 .432 .305 .211 .149 .361 .257 .234 .220 

Target .353 .192 .116 .092 .353 .192 .116 .092 .353 .192 .116 .092 

5 1.0 Obs. .370 .252 .169 .121 .427 .334 .248 .189 .522 .380 .319 .284 

Target .389 .286 .190 .137 .389 .286 .190 .137 .389 .286 .190 .137 

8 1.6 Obs. .387 .326 .242 .179 .427 .364 .286 .225 .573 .453 .374 .319 

Target .400 .345 .260 .193 .400 .345 .260 .193 .400 .345 .260 .193 

10 2.0 Obs. .390 .351 .272 .208 .421 .373 .296 .235 .590 .483 .394 .336 

Target .402 .364 .291 .223 .402 .364 .291 .223 .402 .364 .291 .223 

 

Table 8  Simulated power levels of a two-sided Welch t-test with 𝛼 = 0.05 for n=10 

   Base Population: N(0,2)  Base Population: Chi(2)  Base Population: 
CN(.8,4) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
  𝒏𝟏 = 𝟏𝟎 𝒏𝟏 = 𝟏𝟎 𝒏𝟏 = 𝟏𝟎 

5 .5 Obs. .651 .346 .197 .131 .768 .493 .320 .221 .689 .484 .404 .358 

Target .666 .364 .206 .139 .666 .364 .206 .139 .666 .364 .206 .139 

10 1.0 Obs. .742 .556 .369 .254 .831 .612 .430 .308 .776 .619 .496 .419 

Target .745 .562 .337 .259 .745 .562 .337 .259 .745 .562 .337 .259 

15 1.5 Obs. .765 .641 .483 .358 .865 .679 .511 .377 .792 .679 .547 .456 

Target .767 .643 .483 .352 .767 .643 .483 .352 .767 .643 .483 .352 

20 2 Obs. .774 .683 .549 .417 .898 .737 .565 .448 .797 .716 .596 .490 

Target .777 .686 .551 .422 .777 .686 .551 .422 .777 .686 .551 .422 
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Table 9  Simulated power levels of a two-sided Welch t-test with 𝛼 = 0.05 for n=15 

   Base Population: N(0,2) Base Population: Chi(2)  Base Population: 
CN(.8,4) 

  𝜎2

𝜎1
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝑛2 𝑛2

𝑛1
  𝑛1 = 15 𝑛1 = 15 𝑛1 = 15 

8 .53 Obs. .857 .569 .342 .229 .871 .651 .421 .293 .853 .632 .505 .428 

Target .861 .568 .338 .221 .861 .568 .338 .221 .861 .568 .338 .221 

15 1.0 Obs. .906 .745 .535 .368 .942 .763 .563 .415 .891 .760 .611 .500 

Target .910 .753 .541 .379 .910 .753 .541 .379 .910 .753 .541 .379 

23 1.53 Obs. .928 .831 .667 .502 .975 .858 .676 .517 .898 .825 .698 .572 

Target .925 .830 .670 .509 .925 .830 .670 .509 .925 .830 .670 .509 

30 2.0 Obs. .933 .861 .737 .589 .984 .903 .750 .598 .902 .847 .742 .619 

Target .931 .863 .736 .589 .931 .863 .736 .589 .931 .863 .736 .589 

 

Table 10  Simulated power levels of a two-sided Welch t-test with 𝛼 = 0.05 for n=20 

   Base Population: N(0,2)  Base Population: Chi(2)  Base Population: 
CN(.8,4) 

  𝝈𝟐

𝝈𝟏
 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0 

𝒏𝟐 𝒏𝟐

𝒏𝟏
  𝒏𝟏 = 𝟐𝟎 𝒏𝟏 = 𝟐𝟎 𝒏𝟏 = 𝟐𝟎 

10 .5 Obs. .938 .687 .426 .275 .920 .698 .486 .333 .923 .716 .568 .476 

Target .941 .686 .424 .277 .941 .686 .424 .277 .941 .686 .424 .277 

20 1.0 Obs. .971 .866 .672 .485 .981 .858 .670 .506 .952 .856 .696 .567 

Target .971 .869 .673 .489 .971 .869 .673 .489 .971 .869 .673 .489 

30 1.5 Obs. .977 .923 .791 .629 .995 .932 .785 .631 .960 .908 .798 .662 

Target .978 .922 .791 .628 .978 .922 .791 .628 .978 .922 .791 .628 

40 2.0 Obs. .983 .950 .858 .724 .998 .966 .864 .726 .958 .929 .845 .725 

Target .981 .945 .854 .719 .981 .945 .854 .719 .981 .945 .854 .719 
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When the two samples are generated from normal populations, the simulated power values are 

consistent with the theoretical power values, even for very small samples. As illustrated in Figure 

7, the theoretical and simulated power curves are practically indistinguishable. These results are 

consistent with Theorem B2. 

 

Figure 8  Simulated and targeted theoretical power levels of a two-sided Welch t-test with 𝛼 =

0.05 based on pairs of samples generated from two normal populations with equal or unequal 

variances plotted against ratio of sample sizes.  

When the samples are generated from the skew chi-square distributions, the simulated power 

values are higher than the theoretical power values for very small samples; however, the power 

values become closer as the sample sizes increase. Figure 9 shows that the targeted theoretical 

and simulated power curves are consistently close when the minimum size of the two samples is 

at least 10. This illustrates that skewed data has no remarkable effect on the power function of 

the Welch t-test, even when the samples are relatively small. 
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Figure 9  Simulated and targeted theoretical power levels of a two-sided Welch t-test with 𝛼 =

0.05 based on pairs of samples generated from two normal populations with equal or unequal 

variances plotted against ratio of sample sizes.  

In addition, outliers tend to influence the power function only when the sample sizes are very 

small. In general, when outliers are present the simulated power values tend to be a bit higher 

than the targeted theoretical power values. This is depicted in Figure 10 where the simulated 

and theoretical power curves are not reasonably close until the minimum sample size reaches 

15. 
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Figure 10  Simulated and targeted theoretical power levels of a two-sided Welch t-test with 𝛼 =

0.05 based on pairs of samples generated from two normal populations with equal or unequal 

variances plotted against ratio of sample sizes. 
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Appendix D: Proof of theorem B2 
For the two-sample model, Welch’s approach for deriving the distribution of the test statistic  

𝑡𝑤(𝑥, 𝑦) =
�̅� − �̅� − 𝛿

√
𝑠1

2
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+

𝑠2
2

𝑛2

 

under the null hypothesis is based upon an approximation of the distribution of  

𝑉 =
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
 

as proportional to a chi-square distribution. More specifically, 

𝑑𝑊𝑉

𝜎1
2
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+

𝜎2
2

𝑛2

 

is approximately distributed as a chi-square distribution with 𝑑𝑊 degrees of freedom where 
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2
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2
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)
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2(𝑛1 − 1)

+
𝜎2

4

𝑛2
2(𝑛2 − 1)

 

(Note that in a one-sample setting this reduces to the well known classical result that (𝑛 − 1)𝑠2/

𝜎2~𝜒𝑛−1
2 ) 

Consider the test of the null hypothesis 𝐻𝑜: 𝜇1 = 𝜇2 (or equivalently 𝛿 = 0) against the 

alternative 𝐻𝐴: 𝜇1 ≠ 𝜇2 (or equivalently 𝛿 ≠ 0) 

Under the null hypothesis, the power function 

𝜋(𝑛1, 𝑛2, 𝛿) = 𝜋(𝑛1, 𝑛2, 0) = 1 − Pr (−𝑡𝑑𝑊

𝛼/2
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�̅� − �̅�
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≤ 𝑡𝑑𝑊

𝛼/2
) ≈ 𝛼 

where 𝑡𝑑
𝛼denotes the 100 𝛼 upper percentile point of the t-distribution with 𝑑 degrees of 

freedom.  

Under the alternative hypothesis, 

�̅� − �̅�

√𝑉
=

�̅� − �̅� − 𝛿

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

+
𝛿

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

√
𝑑𝑊𝑉

𝑑𝑊 (
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
)

 



 

2-SAMPLE t-TEST 32 

has the approximate non-central t distribution with 𝑑𝑊 degrees of freedom with non-centrality 

parameter 

𝜆𝑊 =
𝛿

√𝜎1
2/𝑛1 + 𝜎2

2/𝑛2

 

because as stated earlier  

𝑑𝑊𝑉

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2

 

is approximately distributed as a chi-square distribution with 𝑑𝑊 degrees of freedom, and  

�̅� − �̅� − 𝛿

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

 

is distributed as a standard normal distribution. 

It follows that under the alternative, 

𝜋(𝑛1, 𝑛2, 𝛿) = 1 − Pr (−𝑡𝑑𝑊

𝛼/2
≤

�̅� − �̅�

√𝑉
≤ 𝑡𝑑𝑊

𝛼/2
) ≈ 1 − 𝐺𝑑𝑊,𝜆𝑊

(𝑡𝑑𝑊

𝛼/2
) + 𝐺𝑑𝑊,𝜆𝑊

(−𝑡𝑑𝑊

𝛼/2
) 

where 𝐺𝑑𝑊,𝜆(. ) is the C.D.F of the non-central t distribution with 𝑑𝑊 degrees of freedom and 

non centrality parameter 𝜆 as given above.  



 

2-SAMPLE t-TEST 33 

Appendix E: Proof of theorem B3 
First, note that 𝑑𝑊 can be rewritten as 

𝑑𝑊 =
(

1
𝑛1

+
𝜌2

𝑛2
)

2

1
𝑛1

2(𝑛1 − 1)
+

𝜌4

𝑛2
2(𝑛2 − 1)

 

where 𝜌 = 𝜎1/𝜎2. 

Similarly, the non-centrality parameter associated with the Welch t-test power function can also 

be written as 

𝜆𝑊 =
𝛿/𝜎1

√1/𝑛1 + 𝜌2/𝑛2

 

Under the assumption of equal variance, the non-centrality parameters associated with the 

power functions of the classical 2-sample t-test and the Welch test coincide. That is 

𝜆 = 𝜆𝑊 =
𝛿

𝜎√1/𝑛1 + 1/𝑛2

 

where 𝜎 is the common variance of the two populations. Thus, the only difference in the power 

functions of the two tests resides in the difference between their respective degrees of freedom. 

But, under the equal variance assumption, the degrees of freedom associated with the Welch  

t-test power function becomes 

𝑑𝑊 =
(

1
𝑛1

+
1

𝑛2
)

2

1
𝑛1

2(𝑛1 − 1)
+

1
𝑛2

2(𝑛2 − 1)

=
(𝑛1 + 𝑛2)2(𝑛1 − 1)(𝑛2 − 1)

𝑛1
2(𝑛1 − 1) + 𝑛2

2(𝑛2 − 1)
 

By Theorem 1, the degrees of freedom related to the power function of the classical 2-sample  

t-test is 𝑑𝐶 = 𝑛1 + 𝑛2 − 2. After some algebraic manipulations, we have 

𝑑𝐶 − 𝑑𝑊 =
(𝑛1 − 𝑛2)2(𝑛1 + 𝑛2 − 1)2

𝑛1
2(𝑛1 − 1) + 𝑛2

2(𝑛2 − 1)
≥ 0 

The fact that 𝑑 − 𝑑𝑊 ≥ 0 is not surprising because we know that under the assumption of 

equality of variances the classical 2-sample t-test is UMP (uniformly most powerful), as a result 

one should expect the degrees of freedom associated with its power function to be higher. 

Now, if 𝑛1~𝑛2 then 𝑑~𝑑𝑊 and as a result the power functions have the same order of 

magnitude. In particular, the power functions of the two tests are identical if 𝑛1 = 𝑛2. This proves 

the first part of theorem 2.3. 

If 𝑛1 ≠ 𝑛2, then 𝑑𝐶 − 𝑑𝑊 > 0 so that the Welch t-test has less power than the classical 2-sample 

t-test. 
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In addition, if the samples are large, that is if 𝑛1 → ∞ and 𝑛2 → ∞ then 𝑑𝐶 → ∞ and 𝑑𝑊 → ∞ so 

that the asymptotic distribution of the test statistics associated with both tests is the standard 

normal distribution. Thus, the tests are asymptotically equivalent and yield the same asymptotic 

power function. 
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