Nh. Minitab

MINITAB ASSISTANT WHITE PAPER
This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab Statistical Software.

Capability Analysis

Overview

Capability analysis is used to evaluate whether a process is capable of producing output that meets customer requirements. The Minitab Assistant includes two capability analyses to examine continuous process data.

- Capability Analysis: This analysis evaluates capability based on a single process variable.
- Before/After Capability Comparison: This analysis evaluates whether an improvement effort made the process more capable of meeting customer requirements, by examining a single process variable before and after the improvement.

To adequately estimate the capability of the current process and to reliably predict the capability of the process in the future, the data for these analyses should come from a stable process (Bothe, 1991; Kotz and Johnson, 2002). In addition, because these analyses estimate the capability statistics based on the normal distribution, the process data should follow a normal or approximately normal distribution. Finally, there should be enough data to ensure that the capability statistics have good precision and that the stability of the process can be adequately evaluated.

Based on these requirements, the Assistant automatically performs the following checks on your data and displays the results in the Report Card:

- Stability
- Normality
- Amount of data

In this paper, we investigate how these requirements relate to capability analysis in practice and describe how we established our guidelines to check for these conditions.
Σ

Data checks

Stability

To accurately estimate process capability, your data should come from a stable process. You should verify the stability of your process before you check whether the data is normal and before you evaluate the capability of the process. If the process is not stable, you should identify and eliminate the causes of the instability.

Eight tests can be performed on variables control charts (Xbar-R/S or I-MR chart) to evaluate the stability of a process with continuous data. Using these tests simultaneously increases the sensitivity of the control chart. However, it is important to determine the purpose and added value of each test because the false alarm rate increases as more tests are added to the control chart.

Objective

We wanted to determine which of the eight tests for stability to include with the variables control charts in the Assistant. Our first goal was to identify the tests that significantly increase sensitivity to out-of-control conditions without significantly increasing the false alarm rate. Our second goal was to ensure the simplicity and practicality of the chart. Our research focused on the tests for the Xbar chart and the I chart. For the R, S, and MR charts, we use only test 1, which signals when a point falls outside of the control limits.

Method

We performed simulations and reviewed the literature to evaluate how using a combination of tests for stability affects the sensitivity and the false alarm rate of the control charts. In addition, we evaluated the prevalence of special causes associated with the test. For details on the methods used for each test, see the Results section below and Appendix B.

Results

We found that Tests 1,2 , and 7 were the most useful for evaluating the stability of the Xbar chart and the I chart:

TEST 1: IDENTIFIES POINTS OUTSIDE OF THE CONTROL LIMITS

Test 1 identifies points > 3 standard deviations from the center line. Test 1 is universally recognized as necessary for detecting out-of-control situations. It has a false alarm rate of only 0.27%.

TEST 2: IDENTIFIES SHIFTS IN THE MEANS

Test 2 signals when 9 points in a row fall on the same side of the center line. We performed a simulation using 4 different means, set to multiples of the standard deviation, and determined
the number of subgroups needed to detect a signal. We set the control limits based on the normal distribution. We found that adding test 2 significantly increases the sensitivity of the chart to detect small shifts in the mean. When test 1 and test 2 are used together, significantly fewer subgroups are needed to detect a small shift in the mean than are needed when test 1 is used alone. Therefore, adding test 2 helps to detect common out-of-control situations and increases sensitivity enough to warrant a slight increase in the false alarm rate.
test 7: identifies control limits that are too wide
Test 7 signals when 12-15 points in a row fall within 1 standard deviation of the center line. Test 7 is used only for the XBar chart when the control limits are estimated from the data. When this test fails, the cause is usually a systemic source of variation (stratification) within a subgroup, which is often the result of not forming rational subgroups. Because forming rational subgroups is critical for ensuring that the control chart can accurately detect out-of-control situations, the Assistant uses a modified test 7 when estimating control limits from the data. Test 7 signals a failure when the number of points in a row is between 12 and 15 , depending on the number of subgroups:

$\mathbf{k}=$ (Number of Subgroups) $\mathbf{x} 0.33$	Points required
$k<12$	12
$k \geq 12$ and $k \leq 15$	Integer $\geq k$
$k>15$	15

Tests not included in the Assistant

TEST 3: K POINTS IN A ROW, ALL INCREASING OR ALL DECREASING
Test 3 is designed to detect drifts in the process mean (Davis and Woodall, 1988). However, when test 3 is used in addition to test 1 and test 2, it does not significantly increase the sensitivity of the chart to detect drifts in the process mean. Because we already decided to use tests 1 and 2 based on our simulation results, including test 3 would not add any significant value to the chart.

TEST 4: K POINTS IN A ROW, ALTERNATING UP AND DOWN
Although this pattern can occur in practice, we recommend that you look for any unusual trends or patterns rather than test for one specific pattern.

TEST 5: K OUT OF K+1 POINTS > 2 STANDARD DEVIATIONS FROM CENTER LINE
To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify special cause situations that are common in practice.

TEST 6: K OUT OF K+1 POINTS > 1 STANDARD DEVIATION FROM THE CENTER LINE
To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify special cause situations that are common in practice.

TEST 8: K POINTS IN A ROW > 1 STANDARD DEVIATION FROM CENTER LINE (EITHER SIDE)
To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify special cause situations that are common in practice.

When checking stability in the Report Card, the Assistant displays the following status indicators:

Status	Condition
No test failures on the chart for the mean (I chart or Xbar chart) and the chart for variation (MR, R, or S chart). The tests used for each chart are: I chart: Test 1 and Test 2. Xbar chart: Test 1, Test 2 and Test 7. Test 7 is only performed when control limits are estimated from the data. MR, R and S charts: Test 1	

The specific messages that accompany each status condition are phrased in the context of capability analysis; therefore, these messages differ from those used when the variables control charts are displayed separately in the Assistant.

Normality

In normal capability analysis, a normal distribution is fit to the process data and the capability statistics are estimated from the fitted normal distribution. If the distribution of the process data is not close to normal, these estimates may be inaccurate. The probability plot and the Anderson-Darling (AD) goodness-of-fit test can be used to evaluate whether data are normal. The AD test tends to have higher power than other tests for normality. The test can also more effectively detect departures from normality in the lower and higher ends (tails) of a distribution (D'Agostino and Stephens, 1986). These properties make the AD test well-suited for testing the goodness-of-fit of the data when estimating the probability that measurements are outside the specification limits.

Objective

Some practitioners have questioned whether the AD test is too conservative and rejects the normality assumption too often when the sample size is extremely large. However, we could not find any literature that discussed this concern. Therefore, we investigated the effect of large sample sizes on the performance of the AD test for normality.

We wanted to find out how closely the actual AD test results matched the targeted level of significance (alpha, or Type I error rate) for the test; that is, whether the AD test incorrectly rejected the null hypothesis of normality more often than expected when the sample size was large. We also wanted to evaluate the power of the test to identify nonnormal distributions; that is, whether the AD test correctly rejected the null hypothesis of normality as often as expected when the sample size was large.

Method

We performed two sets of simulations to estimate the Type I error and the power of the AD test.
TYPE IERROR: THE PROBABILITY OF REJECTING NORMALITY WHEN THE DATA ARE FROM A NORMAL DISTRIBUTION

To estimate the Type I error rate, we first generated 5000 samples of the same size from a normal distribution. We performed the AD test for normality on every sample and calculated the p-value. We then determined the value of k, the number of samples with a p-value that was less than or equal to the significance level. The Type I error rate can then be calculated as $k / 5000$. If the AD test performs well, the estimated Type I error should be very close to the targeted significance level.

POWER: THE PROBABILITY OF REJECTING NORMALITY WHEN THE DATA ARE NOT FROM A NORMAL DISTRIBUTION

To estimate the power, we first generated 5000 samples of the same size from a nonnormal distribution. We performed the AD test for normality on every sample and calculated the pvalue. We then determined the value of k, the number of samples with a p-value that was less than or equal to the significance level. The power can then be calculated as $k / 5000$. If the $A D$ test performs well, the estimated power should be close to 100%.

We repeated this procedure for samples of different sizes and for different normal and nonnormal populations. For more details on the methods and results, see Appendix B.

Results

TYPE IERROR

Our simulations showed that when the sample size is large, the AD test does not reject the null hypothesis more frequently than expected. The probability of rejecting the null hypothesis when the samples are from a normal distribution (the Type I error rate) is approximately equal to the target significance level, such as 0.05 or 0.1 , even for sample sizes as large as 10,000.

POWER

Our simulations also showed that for most nonnormal distributions, the AD test has a power close to $1(100 \%)$ to correctly reject the null hypothesis of normality. The power of the test was low only when the data were from a nonnormal distribution that was extremely close to a
normal distribution. However, for these near normal distributions, a normal distribution is likely to provide a good approximation for the capability estimates.
Based on these results, the Assistant uses a probability plot and the Anderson-Darling (AD) goodness-of-fit test to evaluate whether the data are normal. If the data are not normal, the Assistant tries to transform the data using the Box-Cox transformation. If the transformation is successful, the transformed data are evaluated for normality using the AD test.

This process is shown in the flow chart below.

Based on these results, the Assistant Report Card displays the following status indicators when evaluating normality in capability analysis:

Status	Condition
The original data passed the AD normality test $(p \geq 0.05)$.	
or	
The original data did not pass the AD normality test $(p<0.05), ~ b u t ~ t h e ~ u s e r ~ h a s ~ c h o s e n ~ t o ~ t r a n s f o r m ~$ the data with Box-Cox and the transformed data passes the AD normality test ($p \geq 0.05)$.	

Status	Condition
1	The original data did not pass the AD normality test $(p<0.05)$. The Box-Cox transformation corrects the problem, but the user has chosen not to transform the data. or The original data did not pass the AD normality test ($p<0.05$). The Box-Cox transformation cannot be successfully performed on the data to correct the problem.

Amount of data

To obtain precise capability estimates, you need to have enough data. If the amount of data is insufficient, the capability estimates may be far from the "true" values due to sampling variability. To improve precision of the estimate, you can increase the number of observations. However, collecting more observations requires more time and resources. Therefore, it is important to know how the number of observations affects the precision of the estimates, and how much data is reasonable to collect based on your available resources.

Objective

We investigated the number of observations that are needed to obtain precise estimates for normal capability analysis. Our objective was to evaluate the effect of the number of observations on the precision of the capability estimates and to provide guidelines on the required amount of data for users to consider.

Method

We reviewed the literature to find out how much data is generally considered adequate for estimating process capability. In addition, we performed simulations to explore the effect of the number of observations on a key process capability estimate, the process benchmark Z. We generated 10,000 normal data sets, calculated Z bench values for each sample, and used the results to estimate the number of observations needed to ensure that the difference between the estimated Z and the true Z falls within a certain range of precision, with 90% and 95% confidence. For more details, see Appendix C.

Results

The Statistical Process Control (SPC) manual recommends using enough subgroups to ensure that the major sources of process variation are reflected in the data (AIAG, 1995). In general, they recommend collecting at least 25 subgroups, and at least 100 total observations. Other sources cite an "absolute minimum" of 30 observations (Bothe, 1997), with a preferred minimum of 100 observations.

Our simulation showed that the number of observations that are needed for capability estimates depends on the true capability of the process and the degree of precision that you want your estimate to have. For common target Benchmark Z values ($Z>3$), 100 observations provide 90%
confidence that the estimated process benchmark Z falls within a 15% margin of the true Z value (0.85 * true Z, 1.15 * true Z). For more details, see Appendix C.
When checking the amount of data for capability analysis, the Assistant Report Card displays the following status indicators:

Status	Condition
	Number of observations is ≥ 100.
	Number of observations is <100.

References

AIAG (1995). Statistical process control (SPC) reference manual. Automotive Industry Action Group.

Bothe, D.R. (1997). Measuring process capability: Techniques and calculations for quality and manufacturing engineers. New York: McGraw-Hill.

D'Agostino, R.B., \& Stephens, M.A. (1986). Goodness-of-fit techniques. New York: Marcel Dekker.
Kotz, S., \& Johnson, N.L. (2002). Process capability indices - a review, 1992 - 2000. Journal of Quality Technology, 34 (January), 2-53.

Appendix A: Stability

Simulation Al How adding test 2 to test 1 affects sensitivity

Test 1 detects out-of-control points by signaling when a point is greater than 3 standard deviations from the center line. Test 2 detects shifts in the mean by signaling when 9 points in a row fall on the same side of the center line.

To evaluate whether using test 2 with test 1 improves the sensitivity of the means charts (I chart and Xbar chart), we established control limits for a normal ($0, ~ S D$) distribution. We shifted the mean of the distribution by a multiple of the standard deviation and then recorded the number of subgroups needed to detect a signal for each of 10,000 iterations. The results are shown in Table 1.

Table 1 Average number of subgroups until a test 1 failure (Test 1), test 2 failure (Test 2), or test 1 or test 2 failure (Test 1 or 2). The shift in mean equals a multiple of the standard deviation (SD) and the simulation was performed for subgroup sizes $n=1,3$ and 5 .

Shift	$\mathrm{n}=1$			$\mathrm{n}=3$			$n=5$		
	Test 1	Test 2	Test 1 or 2	Test 1	Test 2	Test 1 or 2	Test 1	Test 2	$\text { Test } 1$ $\text { or } 2$
0.5 SD	154	84	57	60	31	22	33	19	14
1SD	44	24	17	10	11	7	4	10	4
15 SD	15	13	9	3	9	3	1.6	9	16
2 SD	6	10	5	1.5	9	15	1.1	9	11

As seen in the results for the I chart ($n=1$), when both tests are used (Test 1 or 2 column) an average of 57 subgroups are needed to detect a 0.5 standard deviation shift in the mean, compared to an average of 154 subgroups needed to detect a 0.5 standard deviation shift when test 1 is used alone. Similarly, using both tests increases the sensitivity for the Xbar chart ($\mathrm{n}=3$, $n=5$). For example, for a subgroup size of 3 , an average of 22 subgroups are needed to detect a 0.5 standard deviation shift when both test 1 and test 2 are used, whereas 60 subgroups are needed to detect a 0.5 standard deviation shift when test 1 is used alone. Therefore, using both tests significantly increases sensitivity to detect small shifts in the mean. As the size of the shift increases, adding test 2 does not significantly increase the sensitivity.

Simulation B2: How effectively does Test 7 detect stratification (multiple sources of variability in subgroups)?

Test 7 typically signals a failure when between 12 and 15 points in a row fall within one standard deviation of the center line. The Assistant uses a modified rule that adjusts the number of points required based on the number of subgroups in the data. We set $k=$ (number of subgroups * 0.33) and define the points in a row required for a test 7 failure as shown in Table 2.

Table 2 Points in a row required for a failure on test 7

$\mathbf{k}=$ (Number of Subgroups) $\times 0.33$	Points required
$k<12$	12
$k \geq 12$ and $k \leq 15$	Integer $\geq k$
$k>15$	15

Using common scenarios for setting control limits, we performed a simulation to determine the likelihood that test 7 will signal a failure using the above criteria. Specifically, we wanted to evaluate the rule for detecting stratification during the phase when control limits are estimated from the data.

We randomly chose m subgroups of size n from a normal distribution with a standard deviation (SD). Half of the points in each subgroup had a mean equal to 0 and the other half had a mean equal to the SD shift (0 SD, 1 SD, or 2 SD). We performed 10,000 iterations and recorded the percentage of charts that showed at least one test 7 failure, as shown in Table 3.

Table 3 Percentage of charts that have at least one signal from Test 7

Number of subgroups Subgroup size Test		$\begin{aligned} & m=50 \\ & n=2 \end{aligned}$ 15 in a row	$\begin{aligned} & m=75 \\ & n=2 \end{aligned}$ 15 in a row	$\begin{aligned} & m=25 \\ & n=4 \end{aligned}$ 12 in a row	$\begin{aligned} & \mathrm{m}=38 \\ & \mathrm{n}=4 \end{aligned}$ 13 in a row	$\begin{aligned} & m=25 \\ & n=6 \end{aligned}$ 12 in a row
Shift	0 SD	5\%	8\%	7\%	8\%	7\%
	1SD	23\%	33\%	17\%	20\%	15\%
	2 SD	83\%	94\%	56\%	66\%	50\%

As seen in the first Shift row of the table (shift = 0 SD), when there is no stratification, a relatively small percentage of charts have at least one test 7 failure. However, when there is stratification (shift = 1 SD or shift = 2 SD), a much higher percentage of charts—as many as 94%-have at
least one test 7 failure. In this way, test 7 can identify stratification in the phase when the control limits are estimated.

Appendix B: Normality

Simulation B.I Estimating Type I error rate for the AD test

To investigate the Type I error rate of the AD test for large samples, we generated different dispersions of the normal distribution with a mean of 30 and standard deviations of $0.1,5,10$, 30,50 and 70 . For each mean and standard deviation, we generated 5000 samples with sample size $n=500,1000,2000,3000,4000,5000,6000$, and 10000 , respectively, and calculated the p value of the AD statistic. We then estimated the probabilities of rejecting normal distribution given a normal data set by the proportion of the p-values ≤ 0.05, and ≤ 0.1 out of the 5000 samples. The results are shown in Tables 4-9 below.

Table 4 Type I Error Rate for Mean $=30$, Standard Deviation $=0.1$, for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{6 0 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value \leq 0.05	0.0514	0.0480	0.0526	0.0458	0.0492	0.0518	0.0582	0.0486
Proportion of data sets with p-value ≤ 0.1	0.1008	0.1008	0.0984	0.0958	0.1004	0.1028	0.1046	0.0960

Table 5 Type I Error Rate for Mean = 30, Standard Deviation = 5, for each sample size (n) and p value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{6 0 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value \leq 0.05	0.0524	0.0520	0.0446	0.0532	0.0481	0.0518	0.0594	0.0514
Proportion of data sets with p-value ≤ 0.1	0.0990	0.1002	0.0990	0.1050	0.0965	0.1012	0.1074	0.1030

Table 6 Type I Error Rate for Mean $=30$, Standard Deviation $=10$, for sample size (n) and p -value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{6 0 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	0.0486	0.0488	0.0498	0.0500	0.0458	0.0470	0.0446	0.0524
Proportion of data sets with p-value $\leq \mathbf{0 . 1}$	0.1008	0.0964	0.0988	0.1076	0.0930	0.0942	0.0924	0.1062

Table 7 Type I Error Rate for Mean $=30$, Standard Deviation $=30$, for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{6 0 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	0.0514	0.0432	0.0506	0.0486	0.0558	0.0482	0.0508	0.0482
Proportion of data sets with p-value ≤ 0.1	0.1028	0.0888	0.0978	0.0994	0.1012	0.0994	0.0992	0.0932

Table 8 Type I Error Rate for Mean $=30$, Standard Deviation $=50$, for each sample size (n) and p-value ($0.05,0.1$)

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{6 0 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	0.0470	0.0530	0.0520	0.0460	0.0540	0.0444	0.0458	0.0472
Proportion of data sets with p-value ≤ 0.1	0.0950	0.0996	0.1072	0.0940	0.0996	0.0980	0.0890	0.0940

Table 9 Type I Error Rate for Mean = 30, Standard Deviation = 70, for each sample size (n) and p -value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{6 0 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	0.0520	0.0524	0.0522	0.0528	0.0502	0.0442	0.0500	0.0422
Proportion of data sets with p-value ≤ 0.1	0.1038	0.1040	0.1020	0.0994	0.0990	0.0926	0.0994	0.0964

In every table, the proportions in row 2 are close to 0.05 , and the proportions in row 3 are close to 0.1 , which indicates that the type I error rate is as expected based on the targeted level of significance (0.5 or 0.1 , respectively). Therefore, even for large samples and for various
dispersions of the normal distribution, the AD is not conservative but rejects the null hypothesis as often as would be expected based on the targeted level of significance.

Simulation B.2: Estimating the power of the AD test

To investigate the power of the AD test to detect nonnormality for large samples, we generated data from many nonnormal distributions, including nonnormal distributions commonly used to model process capability. For each distribution, we generated 5000 samples at each sample size ($n=500,1000,3000,5000,7500$, and 10000 , respectively) and calculated the p-values for the AD statistics. Then, we estimated the probability of rejecting the AD test for nonnormal data sets by calculating the proportions of p-values ≤ 0.05, and p-values ≤ 0.1 out of the 5000 samples.
The results are shown in Tables 10-26 below.
Table 10 Power for t distribution with $d f=3$ for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 11 Power for t distribution with $d f=5$ for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	0.9812	0.9998	100	100	100	100	0.9812	0.9998
Proportion of data sets with p-value ≤ 0.1	0.9890	0.9998	100	100	1.00	100	0.9890	0.9998

Table 12 Power for Laplace $(0,1)$ distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 13 Power for Uniform (0,1) distribution for each sample size (n) and p -value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 14 Power for Beta $(3,3)$ distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	0.7962	0.9944	100	100	1.00	100	0.7962	0.9944
Proportion of data sets with p-value ≤ 0.1	0.8958	0.9944	100	100	1.00	100	0.8958	0.9944

Table 15 Power for Beta $(8,1)$ distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 16 Power for Beta $(8,1)$ distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 17 Power for Expo (2) distribution for each sample size (n) and p-value ($0.05,0.1$)

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 18 Power for Chi-Square (3) distribution for each sample size (n) and p-value ($0.05,0.1$)

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 19 Power for Chi-Square (5) distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 20 Power for Chi-Square (10) distribution for each sample size (n) and p -value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 21 Power for Gamma $(2,6)$ distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 22 Power for Gamma(5, 6) distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 23 Power for Gamma $(10,6)$ distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	0.9970	100	100	100	1.00	100	0.9970	1.00
Proportion of data sets with p-value ≤ 0.1	0.9988	100	100	100	1.00	100	0.9988	1.00

Table 24 Power for Weibull $(1,4)$ distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

Table 25 Power for Weibull $(4,4)$ distribution for each sample size (n) and p-value $(0.05,0.1)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	0.1816	0.3406	0.8502	0.9840	0.9992	100	0.1816	0.3406
Proportion of data sets with p-value ≤ 0.1	0.2818	0.4754	0.9198	0.9928	1.00	100	0.2818	0.4754

Table 26 Power for Weibull $(20,4)$ distribution for each sample size (n) and p-value $(0.05,0.01)$

Sample size (n)	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$	$\mathbf{1 0 0 0 0}$
Proportion of data sets with p-value ≤ 0.05	1.00	100	100	100	1.00	100	100	1.00
Proportion of data sets with p-value ≤ 0.1	1.00	100	100	100	1.00	100	100	1.00

As seen in the above tables, in almost every nonnormal distribution we investigated, the calculated power of the AD test was almost always 100% (1.00) or nearly 100%, which indicates that the AD test correctly rejects the null hypothesis and detects nonnormality for most large samples of nonnormal data. Therefore, the test has extremely high power.

The calculated power of the AD test was significantly less than 100% in only two cases: for the beta $(3,3)$ distribution when $\mathrm{n}=500$ (Table 14) and for the Weibull $(4,4)$ distribution when $\mathrm{n}=$ 500, 1000, and 3000 (Table 25). However, both of these distributions are not far from a normal distribution, as shown in Figures 1 and 2 below.

Figure 1 Comparison of the beta $(3,3)$ distribution and a normal distribution.
As shown in Figure 1 above, the beta $(3,3)$ distribution is close to a normal distribution. This explains why there is a reduced proportion of data sets for which the null hypothesis of normality is rejected by the AD test when the sample size is less than 1000.

Figure 2 Comparison of the Weibull $(4,4)$ distribution and a normal distribution.
Similarly, the Weibull $(4,4)$ distribution is very close to a normal distribution, as shown in Figure 2. In fact, it is difficult to distinguish this distribution from a normal distribution. In this situation, a normal distribution can be a good approximation to the true distribution, and the capability estimates based on a normal distribution should provide a reasonable representation of the process capability.

Appendix C: Amount of data

Simulation C.I: Determining sample sizes required for various levels of precision

Setup and procedure

Without loss of generality, we generated samples using the following means and standard deviations, assuming a lower spec limit (LSL) = -1 and an upper spec limit (USL) = 1:

Table 27 Mean, standard deviation, and target Z values for samples

Mean	Standard deviation	Target Z
0	0.163	6.02
0.1	0.163	5.52
0.2	0.160	5.00
0.2	0.177	4.52
0	0.240	4.01
0.1	0.256	3.51
0.2	0.265	3.02
0.1	0.352	2.50
0	0.437	2.01
0	0.545	150
0.1	0.700	101

We calculated the target Z values (the true Z) using the following formula, where μ is the mean and σ is the standard deviation:

$$
\begin{aligned}
& p_{1}=\operatorname{Pr} o b(X<L S L)=\Phi((L S L-\mu) / \sigma) \\
& p_{2}=\operatorname{Pr} o b(X>U S L)=1-\Phi((U S L-\mu) / \sigma)=\Phi((\mu-U S L) / \sigma)
\end{aligned}
$$

Target $Z=\Phi^{-1}\left(1-p_{1}-p_{2}\right)=-\Phi^{-1}\left(p_{1}+p_{2}\right)$
To perform the simulation, we followed these steps:

1. Generate 10,000 normal data sets with a different sample size for each target Z (shown in Table 27 above).
2. Calculate the Z bench values using the generated data sets. For each target Z and sample size, there were $10,000 \mathrm{Z}$ values.
3. Sort the $10,000 \mathrm{Z}$ values from least to greatest. The 95% CI for Z bench was formed by using the (250th, 9750th) estimated Z values; the 90\% CI by using (500th, 9500th) estimated Z values; and the 80% CI by using (1000th, 9000Th) estimated Z values.
4. Identify the number of observations that result in a difference between the estimated Z and the true Z value within a certain range (precision) at the selected confidence levels.

To perform step 4 of the simulation, we first needed to determine the range, or level of precision, that was appropriate to use in selecting the sample size. No single level of precision can be successfully applied in all situations because the precision that is needed depends on the true value of Z being estimated. For example, the table below shows the relationship between fixed levels of precision and the defect per million opportunities (DPMO) for two different Z values:

Table 28 Relationship between true Z, DPMO, and level of precision

	True Z = 4.5, DPMO =3.4		True Z = 2.5, DPMO = 6209.7	
Precision	Lower DPMO	Upper DPMO	Lower DPMO	Upper DPMO
True Z + - 0.1	2.0	4.4	4661.2	8197.5
True Z +-0.2	1	8.5	3467.0	10724.1
True Z + - 0.3	0.79	13.3	2555.0	13903.0

As shown in the table, if the Z value is 4.5 , all three levels of precision ($+/-0.1,+/ 0.2$, and $+/ 0.3$) can be considered because in most applications the resulting difference in the values of the lower DPMO and the upper DPMO, such as 0.79 vs. 13.3, may not make much practical difference. However, if the true Z value is 2.5 , the levels of precision $+/-0.2$ and $+/-0.3$ may not be acceptable. For example, at the $+/-0.3$ level of precision, the upper DPMO is 13,903 , which is
substantially different from the lower DPMO value of 6209. Therefore, it seems that precision should be chosen based on the true Z value.

For our simulation, we used the following three levels of precision to identify the number of observations that are required.

Table 29 Levels of precision for Z for simulation

Margin	Calculation	Range of Z
15\%	True Z +/-0.15 * True Z	(0.85 True Z, 115 True Z)
10\%	True Z +/-0.1*True Z	(0.9 True Z, 11 True Z)
5\%	True Z +H-0.1*True Z	(0.95 True Z, 1.05 True Z)

SUMMARY OF RESULTS

The main results of the simulation are shown in table 30 below. The table shows the number of observations required for different target Z values at each of the three levels of precision, with 90\% confidence.

Table 30 Required number of observations for each precision margin at the 90% confidence level

		Number of observations		
Target Z	Target DPMO	15% Margin	10% Margin	5% Margin
6.02	0.00085	85	175	675
5.52	0.01695	85	175	650
5.00	0.28665	87	175	625
4.52	3.09198	90	175	600
4.01	30.36	83	175	650
3.51	224.1	90	185	650
3.02	1263.9	94	200	700
2.50	6209.7	103	115	225
2.01	22215.6	66807.2	135	185
150	156247.6		400	1000
101				1600

Notice that as the margin of precision becomes narrower, the number of observations required increases. In addition, if we increase the confidence level from 90% to 95%, substantially more observations are needed, which is evident in the detailed simulation results shown in tables 3152 in the section below.

Based on the results of the simulation, we conclude that:

1. The number of observations required to produce reasonably precise capability estimates varies with the true capability of the process.
2. For common target Benchmark Z values $(Z>3)$, using a minimum of 100 observations, you have approximately 90% confidence that your estimated process benchmark Z is within 15% of the true Z value (0.85 * true $Z, 1.15$ * true Z). If you increase the number of observations to 175 or more, the precision of the estimated benchmark Z falls within a 10% margin (0.9 * true $Z, 1.1$ * true Z).

detailed simulation results

The following tables show the specific results of the simulation that were summarized in Table 30 above. For each target Z, and for each confidence level and each level of precision, we identify the minimum number of observations such that the corresponding confidence interval lies inside the referenced interval.

For example, in the first set of results shown below, when target $Z=6.02$, the reference interval for the 15% margin of precision is calculated to be $(5.117,6.923)$ as shown in row 1 of Table 31. Note that in Table 32, at 90% confidence, the intervals in column 3 do not lie within this reference interval until the number of observations increases to 85 . Therefore, 85 is the estimated minimum number of observations needed to achieve 90% confidence with a 15% margin of precision when the target Z is 6.02 . The results for the confidence levels and precision margins for the other target Z values in tables 33-51 can be interpreted similarly.

TARGET Z=6.02 TARGET DPMO = 0.00085
Table 31 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper Limit
15% margin	$Z-0.15 Z=5.117$	$Z+0.15 Z=6.923$
10% margin	$Z-0.1 Z=5.42$	$Z+0.1 Z=6.62$
5% margin	$Z-0.05 Z=5.72$	$Z+0.05 Z=6.32$

Table 32 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	95\% CI	90\% C I	80\% C I
5	$(3.36,20.97)$	$(3.64,13.91)$	(4.04, 11.22)
10	(3.97, 1182)	$(4.23,9.65)$	$(4.54,8.63)$
15	$(4.26,10.14)$	$(4.49,8.65)$	$(4.79,7.95)$
20	(4.47, 9.40)	(4.67, 8.16)	$(4.93,7.63)$
25	$(4.60,8.82)$	$(4.79,7.87)$	($5.01,7.43$)
30	$(4.70,8.49)$	$(4.88,7.65)$	($5.10,7.25$)
35	$(4.78,8.23)$	$(4.95,7.52)$	(5.16, 7.12)
40	$(4.86,8.08)$	($5.02,7.43$)	(5.22, 7.09)
45	$(4.90,7.89)$	$(5.05,7.30)$	$(5.26,7.00)$
50	$(4.94,7.78)$	($5.09,7.25$)	$(5.28,6.93)$
60	$(5.05,7.55)$	$(5.18,7.08)$	(5.34, 6.81)
70	(5.11, 7.43)	$(5.24,6.97)$	$(5.39,6.75)$
80	$(5.15,7.32)$	$(5.28,6.94)$	$(5.43,6.71)$
85		$(5.30,6.92)$	
90	($5.20,7.23$)	$(5.32,6.87)$	$(5.46,6.67)$
100	(5.24, 7.15)	$(5.35,6.83)$	$(5.48,6.64)$
105	(5.26, 7.13)	(5.37, 6.81)	($5.51,6.63$)
110	(5.27, 7.10)	$(5.38,6.78)$	(5.51, 6.60)
120	(5.31, 7.07)	$(5.41,6.73)$	(5.54, 6.55)
130	$(5.34,7.00)$	(5.44, 6.71)	$(5.56,6.55)$
140	$(5.35,6.97)$	$(5.45,6.70)$	$(5.57,6.54)$
150	(5.37, 6.89)	(5.47, 6.67)	$(5.58,6.51)$
175	($5.42,6.87)$	$(5.50,6.62)$	$(5.62,6.48)$
200	$(5.46,6.77)$	$(5.54,6.55)$	$(5.64,6.43)$

Number of observations	95\% CI	90\% CI	80\% CI
250	($5.51,6.71$)	$(5.58,6.51)$	$(5.67,6.40)$
300	$(5.56,6.62)$	$(5.63,6.46)$	(5.71, 6.36)
350	$(5.59,6.59)$	$(5.65,6.43)$	$(5.73,6.34)$
400	$(5.62,6.54)$	$(5.68,6.40)$	$(5.75,6.32)$
450	$(5.62,6.51)$	(5.69, 6.38)	$(5.76,6.30)$
500	$(5.65,4.50)$	(5.71, 6.36)	$(5.78,6.28)$
550	$(5.68,6.46)$	$(5.73,6.35)$	(5/79, 6.27)
650	(5.71, 6.43)	$(5.75,6.32)$	(5.81, 6.24)
700	(5.71, 6.41)	(5.76, 6.31)	(5.81, 6.24)
900	$(5.75,6.37)$	$(5.79,6.27)$	(5.84, 6.21)
1000	$(5.76,6.34)$	$(5.80,6.26)$	$(5.85,6.20)$
1050	(5.77, 6.35)	(5.81, 6.25)	($5.85,6.20$)
1100	$(5.77,6.33)$	(5.81, 6.25)	$(5.86,6.20)$
1150	$(5.78,6.32)$	$(5.82,6.25)$	$(5.86,6.20)$
1200	$(5.78,6.33)$	$(5.82,6.24)$	$(5.86,6.18)$
1250	$(5.79,6.32)$	$(5.82,6.23)$	$(5.87,6.18)$
1300	$(5.80,6.31)$	$(5.83,6.23)$	$(5.87,6.18)$
1350	$(5.80,6.30)$	$(5.83,6.22)$	$(5.87,6.18)$
1400	$(5.80,6.30)$	$(5.83,6.22)$	$(5.88,6.18)$
1450	$(5.80,6.28)$	(5.84, 6.22)	$(5.88,6.17)$
1500	(5.81, 6.28)	$(5.84,6.21)$	$(5.88,6.17)$
1550	(5.81, 6.28)	$(5.84,6.21)$	$(5.88,6.17)$
1600	(5.81, 6.28)	$(5.85,6.21)$	$(5.88,6.17)$
1650	(5.81, 6.28)	$(5.85,6.21)$	$(5.89,6.17)$
1700	(5.81, 6.27)	$(5.85,6.20)$	$(5.89,6.17)$

TARGET Z $=5.52$ TARGET DPMO $=0.01695$
Table 33 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper Limit
$\mathbf{1 5 \%} \%$ margin	$Z-0.15 Z=4.6920$	$Z+0.15 Z=6.3480$
10% margin	$Z-0.1 Z=4.97$	$Z+0.1 Z=6.07$
5% margin	$Z-0.05 Z=5.24$	$Z+0.05 Z=5.80$

Table 34 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	95\% CI	90\% CI	80\% C I
5	$(3.18,18.68)$	$(3.49,12.87)$	$(3.86,10.62)$
10	$(3.68,1128)$	(3.92, 9.12)	$(4.22,8.14)$
15	$(3.99,9.38)$	$(4.20,8.03)$	$(4.46,7.40)$
20	$(4.15,8.74)$	$(4.34,7.64)$	$(4.59,7.08)$
25	(4.27, 8.18)	$(4.45,7.32)$	$(4.67,6.86)$
30	$(4.36,7.80)$	$(4.52,7.13)$	$(4.75,6.72)$
35	$(4.43,7.61)$	$(4.59,6.94)$	$(4.79,6.60)$
40	(4.47, 7.45)	$(4.64,6.84)$	$(4.82,6.53)$
45	$(4.56,7.23)$	$(4.69,6.73)$	$(4.86,6.44)$
50	(4.55, 7.14)	(4.71, 6.65)	$(4.88,6.38)$
60	$(4.65,7.00)$	$(4.78,6.56)$	$(4.93,6.32)$
70	$(4.71,6.84)$	$(4.82,6.46)$	$(4.97,6.23)$
80	$(4.75,6.73)$	$(4.87,6.38)$	$(5.00,6.18)$
83		$(4.88,6.36)$	
84		$(4.87,6.37)$	
85		$(4.89,6.32)$	
90	$(4.80,6.65)$	$(4.91,6.33)$	$(5.03,6.14)$

Number of observations	95\% CI	90\% CI	80\% C I
100	$(4.84,6.60)$	$(4.94,6.29)$	$(5.06,6.12)$
115	$(4.86,6.50)$	$(4.96,6.23)$	$(5.08,6.07)$
125	$(4.88,6.45)$	$(4.99,6.19)$	$(5.10,6.04)$
150	$(4.94,6.38)$	$(5.03,6.13)$	(5.14, 5.99)
175	$(4.98,6.17)$	$(5.06,6.06)$	$(5.16,5.95)$
200	(5.02, 6.21)	(5.09, 6.03)	$(5.18,5.92)$
250	($5.06,6.15$)	$(5.14,5.98)$	(5.22, 5.87)
300	($5.10,6.09$)	$(5.16,5.94)$	$(5.24,5.84)$
350	$(5.13,6.04)$	(5.19, 5.90)	$(5.26,5.81)$
375	(5.13, 6.02)	(5.19, 5.88)	(5.27, 5.80)
400	$(5.15,6.00)$	(5.21, 5.87)	$(5.28,5.79)$
450	$(5.18,5.98)$	$(5.22,5.85)$	$(5.29,5.78)$
500	($5.19,5.96$)	$(5.24,5.84)$	$(5.30,5.77)$
650	$(5.23,5.83)$	$(5.27,5.80)$	$(5.33,5.73)$
700	(5.24, 5.89)	$(5.28,5.78)$	$(5.34,5.72)$
800	$(5.25,5.86)$	$(5.29,5.76)$	$(5.35,5.71)$
900	$(5.27,5.83)$	$(5.31,5.75)$	$(5.36,5.70)$
1000	$(5.28,5.82)$	$(5.32,5.74)$	(5.37, 5.69)
1100	$(5.29,5.80)$	$(5.33,5.73)$	(5.37, 5.68)
1200	$(5.30,5.79)$	$(5.33,5.72)$	$(5.38,5.68)$
1300	$(5.31,5.78)$	$(5.34,5.71)$	$(5.38,5.67)$
1400	(5.31, 5.77)	$(5.35,5.70)$	(5.39, 5.66)
1500	$(5.32,5.76)$	$(5.35,5.70)$	(5.39, 5.66)
1600	$(5.33,5.76)$	$(5.36,5.69)$	(5.40, 5.65)
1700	$(5.34,5.75)$	(5.37, 5.69)	(5.40, 5.65)

TARGET Z $=5.00$ TARGET DPMO $=0.28665$

Table 35 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper Limit
$\mathbf{1 5 \%} \%$ margin	$Z-0.15 Z=4.25$	$Z+0.15 Z=5.75$
10% margin	$Z-0.1 Z=4.5$	$Z+0.1 Z=5.5$
5% margin	$Z-0.05 Z=4.75$	$Z+0.05 Z=5.25$

Table 36 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	95\% CI	90\% C I	80\% C I
10	$(3.38,10.10)$	(3.57, 8.23)	$(3.85,7.36)$
20	(3.74, 7.80)	$(3.93,6.89)$	$(4.16,6.39)$
30	(3.94, 7.16)	$(4.10,6.47)$	$(4.28,6.11)$
40	$(4.07,6.69)$	$(4.20,6.18)$	$(4.35,5.90)$
50	$(4.15,6.48)$	$(4.27,6.06)$	$(4.41,5.80)$
60	$(4.20,6.27)$	$(4.32,5.92)$	$(4.45,5.70)$
70	$(4.26,6.23)$	$(4.37,5.86)$	$(4.50,5.64)$
80	$(4.29,6.10)$	$(4.40,5.78)$	$(4.53,5.59)$
87		$(4.43,5.75)$	
90	(4.31, 6.05)	$(4.43,5.74)$	$(4.55,5.56)$
100	$(4.35,5.96)$	$(4.44,5.68)$	$(4.57,5.53)$
115	$(4.40,5.91)$	$(4.49,5.64)$	$(4.60,5.50)$
125	$(4.40,5.84)$	$(4.50,5.60)$	$(4.61,5.46)$
150	$(4.47,5.76)$	$(4.55,5.55)$	$(4.65,5.43)$
170	$(4.50,5.70)$	(4.57, 5.51)	$(4.66,5.39)$
175	$(4.50,5.70)$	$(4.58,5.49)$	$(4.67,5.39)$
200	$(4.54,5.65)$	$(4.60,5.48)$	$(4.69,5.37)$

Number of observations	95\% CI	90\% C I	80\% CI
250	$(4.58,5.57)$	$(4.64,5.41)$	$(4.73,5.32)$
300	$(4.61,5.52)$	$(4.67,5.38)$	$(4.74,5.29)$
350	$(4.64,5.47)$	$(4.70,5.34)$	$(4.76,5.26)$
400	$(4.66,5.45)$	$(4.71,5.32)$	(4.77, 5.25)
450	$(4.68,5.42)$	$(4.73,5.30)$	$(4.79,5.23)$
500	$(4.69,5.39)$	(4.74, 5.29)	$(4.80,5.23)$
600	$(4.73,5.35)$	(4.77, 5.26)	$(4.82,5.20)$
625	$(4.73,5.36)$	$(4.77,5.25)$	$(4.82,5.20)$
700	$(4.74,5.32)$	$(4.78,5.23)$	$(4.83,5.18)$
800	$(4.76,5.31)$	(4.80, 5.23$)$	$(4.85,5.17)$
900	$(4.77,5.28)$	(4.81, 5.21)	$(4.85,5.16)$
1000	$(4.78,5.27)$	(4.82, 5.20)	$(4.86,5.16)$
1100	$(4.79,5.26)$	$(4.82,5.19)$	$(4.86,5.15)$
1200	$(4.80,5.25)$	$(4.83,5.18)$	$(4.87,5.14)$
1300	(4.81, 5.24)	$(4.83,5.17)$	$(4.87,5.13)$
1400	(4.82, 5.22)	$(4.84,5.16)$	$(4.88,5.13)$
1500	$(4.83,5.22)$	$(4.85,5.17)$	$(4.88,5.13)$
1600	$(4.82,5.22)$	$(4.85,5.16)$	$(4.88,5.13)$
1700	(4.83, 5.21)	$(4.86,5.16)$	$(4.89,5.12)$

TARGET Z $=4.52$ TARGET DPMO $=3.09198$

Table 37 Reference intervals used to select the minimum number of observations for each level of precision.

Precision	Lower limit	Upper limit
15% margin	$Z-0.15 Z=3.842$	$Z+0.15 Z=5.198$
10% margin	$Z-0.1 Z=4.07$	$Z+0.1 Z=4.97$
5% margin	$Z-0.05 Z=4.29$	$Z+0.05 Z=4.75$

Table 38 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	95\% CI	90\% C I	80\% C I
10	$(3.03,9.22)$	$(3.22,7.50)$	(3.49, 6.72$)$
20	$(3.36,7.07)$	(3.51, 6.20)	(3.72, 5.78)
30	$(3.54,6.45)$	$(3.69,5.83)$	$(3.86,5.52)$
40	$(3.64,6.08)$	$(3.78,5.59)$	($3.94,5.34$)
50	$(3.75,5.87)$	$(3.85,5.46)$	(3.99, 5.23)
60	$(3.80,5.76)$	$(3.91,5.37)$	$(4.04,5.17)$
70	(3.84, 5.61)	$(3.94,5.28)$	$(4.07,5.10)$
80	$(3.88,5.53)$	$(3.98,5.24)$	$(4.09,5.07)$
90	(3.91, 5.47)	$(4.00,5.20)$	$(4.12,5.04)$
92		$(4.00,5.19)$	
100	$(3.93,5.40)$	$(4.02,5.15)$	$(4.13,5.01)$
115	$(3.96,5.34)$	$(4.05,5.10)$	$(4.16,4.96)$
150	$(4.04,5.23)$	(4.11, 5.03)	$(4.20,4.91)$
175	$(4.07,5.16)$	$(4.14,4.97)$	$(4.22,4.87)$
200	$(4.10,5.12)$	$(4.16,4.95)$	$(4.24,4.85)$
250	$(4.14,5.03)$	$(4.20,4.90)$	(4.27, 4.82)
300	(4.17, 4.99)	(4.22, 4.86)	(4.29, 4.79)

Number of observations	95\% CI	90\% C I	80\% C I
350	$(4.20,4.96)$	$(4.25,4.83)$	$(4.30,4.76)$
400	$(4.21,4.93)$	$(4.26,4.81)$	$(4.32,4.75)$
450	$(4.23,4.90)$	(4.27, 4.79)	$(4.32,4.73)$
500	$(4.24,4.88)$	$(4.29,4.78)$	$(4.34,4.72)$
600	$(4.27,4.84)$	$(4.31,4.76)$	$(4.35,4.71)$
700	$(4.29,4.82)$	$(4.32,4.74)$	$(4.36,4.69)$
800	$(4.29,4.80)$	$(4.33,4.72)$	$(4.37,4.68)$
900	$(4.31,4.78)$	(4.34, 4.71)	$(4.38,4.67)$
1000	$(4.32,4.76)$	$(4.35,4.70)$	$(4.39,4.66)$
1100	$(4.33,4.75)$	$(4.36,4.68)$	$(4.39,4.65)$
1200	$(4.34,4.74)$	$(4.37,4.68)$	$(4.40,4.65)$
1300	$(4.34,4.74)$	$(4.37,4.68)$	$(4.40,4.64)$
1400	$(4.35,4.74)$	$(4.38,4.67)$	$(4.41,4.64)$
1500	$(4.36,4.72)$	$(4.38,4.67)$	$(4.41,4.63)$
1600	$(4.36,4.72)$	$(4.39,4.66)$	$(4.42,4.63)$
1700	$(4.36,4.71)$	$(4.39,4.66)$	$(4.42,4.63)$

TARGETZ = 4.01 TARGET DPMO = 30.36
Table 39 Reference intervals used to select the minimum number of observations for each level of precision.

Precision	Lower limit	Upper Limit
15% margin	$Z-0.15 Z=3.4085$	$Z+0.15 Z=4.6115$
10% margin	$Z-0.1 Z=3.61$	$Z+0.1 Z=4.41$
5% margin	$Z-0.05 Z=3.81$	$Z+0.05 Z=4.21$

Table 40 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	95\% C I	90\% C I	80\% C I
5	(2.12, 12.84)	(2.32, 9.13)	(2.61, 7.35)
10	$(2.57,7.96)$	$(2.75,6.50)$	(2.97, 5.79)
15	$(2.79,6.75)$	$(2.95,5.82)$	$(3.13,5.32)$
20	$(2.92,6.21)$	$(3.06,5.46)$	$(3.23,5.08)$
25	$(2.99,5.85)$	$(3.12,5.24)$	$(3.29,4.91)$
30	$(3.09,5.63)$	$(3.20,5.08)$	$(3.35,4.83)$
35	$(3.13,5.50)$	$(3.26,5.04)$	$(3.40,4.76)$
40	(3.17, 5.38$)$	(3.29, 4.95)	$(3.44,4.71)$
45	(3.22, 5.25)	$(3.33,4.86)$	(3.47, 4.65)
50	(3.27, 5.15)	$(3.36,4.82)$	(3.49, 4.62)
60	$(3.32,5.09)$	$(3.42,4.76)$	$(3.53,4.56)$
70	$(3.35,4.98)$	$(3.44,4.68)$	$(3.56,4.52)$
80	(3.41, 4.88)	$(3.50,4.63)$	$(3.60,4.48)$
83		$(3.50,4.61)$	
85		$(3.50,4.60)$	
90	$(3.44,4.82)$	$(3.52,4.58)$	(3.62, 4.44)
100	$(3.47,4.76)$	$(3.55,4.55)$	(3.64, 4.43)
110	$(3.48,4.76)$	$(3.56,4.51)$	$(3.65,4.40)$
115	$(3.48,4.73)$	$(3.56,4.52)$	$(3.66,4.39)$
150	$(3.55,4.63)$	$(3.62,4.44)$	(3.70, 4.33)
175	$(3.58,4.57)$	(3.65, 4.41)	(3.72, 4.32)
200	$(3.61,4.53)$	$(3.67,4.38)$	(3.74, 4.29)
250	$(3.65,4.47)$	$(3.70,4.33)$	(3.77, 4.26)
300	$(3.68,4.43)$	(3.73, 4.31)	$(3.79,4.24)$

Number of observations	95\% CI	90\% C I	80\% CI
350	(3.70, 4.40)	(3.74, 4.28)	(3.80, 4.22)
400	$(3.72,4.36)$	$(3.76,4.27)$	$(3.81,4.20)$
450	$(3.74,4.35)$	$(3.78,4.25)$	$(3.82,4.19)$
500	$(3.75,4.33)$	$(3.79,4.24)$	$(3.84,4.18)$
650	$(3.78,4.28)$	(3.81, 4.21)	$(3.86,4.16)$
675	$(3.79,4.27)$	(3.82, 4.20)	$(3.86,4.16)$
700	$(3.78,4.28)$	(3.82, 4.20)	$(3.86,4.16)$
900	$(3.81,4.25)$	$(3.84,4.18)$	$(3.88,4.14)$
1000	$(3.82,4.23)$	$(3.85,4.16)$	$(3.88,4.13)$
1100	$(3.83,4.22)$	$(3.86,4.16)$	(3.89, 4.12)
1200	$(3.84,4.21)$	(3.87, 4.15)	$(3.89,4.12)$
1300	(3.84, 4.20)	(3.87, 4.15)	(3.90. 4.12)
1400	$(3.85,4.19)$	$(3.88,4.14)$	$(3.90,4.11)$
1500	$(3.86,4.18)$	$(3.88,4.14)$	(3.91, 4.11)
1600	$(3.86,4.18)$	$(3.88,4.13)$	$(3.91,4.10)$
1700	$(3.86,4.18)$	$(3.89,4.13)$	$(3.91,4.10)$

TARGET Z = 3.51 TARGET DPMO = 224.1

Table 41 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper Limit
$\mathbf{1 5 \%} \%$ margin	$Z-0.15 Z=2.9835$	$Z+0.15 Z=4.0365$
10% margin	$Z-0.1 Z=3.16$	$Z+0.17=3.86$
5% margin	$Z-0.05 Z=3.33$	$Z+0.05 Z=3.69$

Table 42 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	95\% CI	90\% C I	80\% C I
10	(2.27, 7.08)	$(2.43,5.80)$	$(2.63,5.17)$
20	(2.57, 5.56$)$	$(2.68,4.88)$	$(2.85,5.52)$
30	$(2.71,5.05)$	$(2.83,4.54)$	$(2.96,4.28)$
40	$(2.80,4.73)$	$(2.90,4.37)$	(3.02, 4.16)
50	$(2.86,4.57)$	$(2.97,4.25)$	$(3.08,4.07)$
60	(2.92, 4.44)	(3.00, 4.18)	$(3.10,4.03)$
70	(2.95, 4.37)	(3.03, 4.13)	$(3.12,3.98)$
80	(2.97, 4.33)	$(3.06,4.08)$	$(3.15,3.94)$
90	(3.01, 4.26)	$(3.08,4.04)$	$(3.17,3.90)$
100	(3.03, 4.22)	(3.11, 4.02)	(3.19, 3.89)
110	$(3.05,4.16)$	$(3.11,3.98)$	$(3.20,3.86)$
150	$(3.12,4.06)$	$(3.17,3.91)$	(3.24, 3.81)
175	$(3.14,4.02)$	$(3.19,3.87)$	$(3.27,3.79)$
185	$(3.14,4.00)$	$(3.20,3.86)$	$(3.26,3.78)$
200	$(3.17,3.97)$	$(3.22,3.84)$	$(3.28,3.77)$
250	(3.20, 3.92)	$(3.24,3.80)$	$(3.30,3.74)$
300	(3.22, 3.88)	$(3.26,3.78)$	(3.31, 3.72)
350	$(3.24,3.86)$	$(3.29,3.76)$	$(3.33,3.71)$
400	$(3.25,3.83)$	$(3.30,3.75)$	$(3.34,3.69)$
450	$(3.27,3.81)$	(3.31, 3.72)	$(3.35,3.67)$
500	$(3.28,3.79)$	$(3.31,3.71)$	$(3.36,3.67)$
600	(3.30, 3.77)	$(3.33,3.70)$	(3.37, 3.65)
650	(3.31, 3.76)	$(3.34,3.69)$	$(3.37,3.65)$
700	(3.31, 3.74)	$(3.34,3.68)$	$(3.38,3.64)$

Number of observations	$\mathbf{9 5 \% ~ C ~ I ~}$	$\mathbf{9 0 \% ~ C I}$	$\mathbf{8 0 \% ~ C ~ I ~}$
$\mathbf{8 0 0}$	$(3.33,3.74)$	$(3.35,3.67)$	$(3.38,3.63)$
900	$(3.33,3.71)$	$(3.36,3.66)$	$(3.39,3.62)$
1000	$(3.34,3.71)$	$(3.37,3.65)$	$(3.40,3.61)$
1100	$(3.35,3.69)$	$(3.38,3.64)$	$(3.40,3.61)$
1200	$(3.36,3.69)$	$(3.38,3.64)$	$(3.41,3.61)$
1300	$(3.38,3.67)$	$(3.39,3.63)$	$(3.41,3.60)$
1400	$(3.38,3.66)$	$(3.40,3.62)$	$(3.42,3.60)$
1500	$(3.38,3.66)$	$(3.40,3.61)$	$(3.42,3.60)$
1600			$(3.42,3.59)$
1700	(3.59)		

TARGET Z = 3.02 TARGET DPMO = 1263.9
Table 43 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper limit
$\mathbf{1 5 \%}$ margin	$Z-0.15 Z=2.567$	$Z+0.15 Z=3.473$
10% margin	$Z-0.1 Z=2.72$	$Z+0.1 Z=3.32$
5% margin	$Z-0.05 Z=2.87$	$Z+0.05 Z=3.17$

Table 44 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	$\mathbf{9 5 \% ~ C ~ I}$	$\mathbf{9 0 \% ~ C ~ I}$	$\mathbf{8 0 \%} \mathbf{C ~ I}$
10	$(1.92,6.26)$	$(2.07,5.02)$	$(2.26,4.49)$
20	$(2.22,4.83)$	$(2.33,4.23)$	$(2.46,3.91)$
30	$(2.32,4.34)$	$(2.42,3.92)$	$(2.54,3.70)$
40	$(2.40 .4 .11)$	$(2.48,3.77)$	$(2.60,3.58)$

Number of observations	95\% C I	90\% C I	80\% C I
50	$(2.45,3.96)$	$(2.55,3.68)$	(2.64, 3.52)
60	$(2.50,3.87)$	$(2.58,3.62)$	$(2.68,3.48)$
70	$(2.54,3.79)$	(2.61, 3.55)	(2.70, 3.43)
80	$(2.56,3.73)$	(2.63, 3.52)	(2.71, 3.40)
90	$(2.59,3.68)$	$(2.65,3.49)$	(2.73, 3.38)
94		$(2.66,3.47)$	
100	$(2.61,3.65)$	(2.67, 3.46)	(2.74, 3.36)
110	$(2.62,3.61)$	$(2.69,3.44)$	$(2.76,3.34)$
120	$(2.64,3.58)$	(2.70, 3.42)	(2.76, 3.32)
150	$(2.68,3.52)$	$(2.73,3.37)$	(2.79, 3.29)
200	(2.72, 3.44)	$(2.76,3.32)$	(2.81, 3.25)
250	$(2.75,3.38)$	$(2.79,3.28)$	(2.84, 3.23)
300	(2.77, 3.36)	(2.81, 3.26)	(2.86, 3.20)
350	$(2.78,3.32)$	$(2.82,3.24)$	(2.87, 3.19)
400	$(2.80,3.30)$	(2.83, 3.22)	(2.87, 3.18)
425	(2.81, 3.29)	(2.84, 3.22)	$(2.88,3.17)$
450	$(2.81,3.28)$	(2.85, 3.21)	$(2.88,3.17)$
500	$(2.82,3.28)$	$(2.85,3.20)$	$(2.88,3.16)$
600	$(2.84,3.25)$	(2.87, 3.19)	(2.90, 3.15)
650	$(2.84,3.24)$	(2.87, 3.18)	(2.90, 3.14)
700	$(2.85,3.23)$	(2.88, 3.17)	(2.91, 3.14)
800	$(2.86,3.22)$	$(2.88,3.16)$	$(2.91,3.13)$
900	(2.87, 3.21)	(2.89, 3.16)	(2.92, 3.12)
1000	$(2.88,3.20)$	(2.90. 3.15)	(2.93, 3.12)
1100	$(2.88,3.18)$	$(2.91,3.14)$	(2.93, 3.11)

Number of observations	$\mathbf{9 5 \% ~ C ~ I}$	$\mathbf{9 0 \% ~ C I}$	$\mathbf{8 0 \% ~ C ~ I ~}$
1200	$(2.89,3.18)$	$(2.91,3.14)$	$(2.93,3.11)$
1300	$(2.89,3.17)$	$(2.91,3.13)$	$(2.94,3.10)$
1400	$(2.90,3.16)$	$(2.92,3.12)$	$(2.94,3.10)$
1500	$(2.90,3.16)$	$(2.92,3.12)$	$(2.94,3.10)$
1600	$(2.91,3.15)$	$(2.92,3.12)$	$(2.94,3.10)$
1700		$(2.93,3.12)$	$(2.95,3.09)$

TARGET Z $=2.50$ TARGET DPMO $=6209.7$
Table 45 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper limit
$\mathbf{1 5 \% \text { margin }}$	$Z-0.15 Z=2.125$	$Z+0.15 Z=2.875$
10% margin	$Z-0.1 Z=2.25$	$Z+0.1 Z=2.75$
5% margin	$Z-0.05 Z=2.38$	$Z+0.05 Z=2.63$

Table 46 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	95\% CI	90\% C I	80\% C I
10	(1.5 1, 5.09)	$(1.63,4.13)$	$(1.78,3.69)$
20	$(1.76,4.05)$	$(1.86,3.51)$	$(1.98,3.25)$
30	(1.87, 3.57)	(1.97, 3.27)	(2.07, 3.07)
40	$(1.94,3.40)$	(2.01, 3.14)	(2.11, 2.98)
50	(1.99, 3.32$)$	(2.07, 3.07)	(2.16, 2.93)
60	(2.04, 3.22)	$(2.10,3.00)$	$(2.18,2.88)$
70	$(2.08,3.14)$	$(2.13,2.96)$	(2.21, 2.85)
80	(2.10, 3.10)	$(2.16,2.93)$	(2.23, 2.82)

Number of observations	95\% CI	90\% C I	80\% C I
90	$(2.11,3.07)$	$(2.16,2.91)$	(2.24, 2.82)
100	(2.13, 3.02)	$(2.18,2.88)$	(2.25, 2.79)
102		$(2.19,2.88)$	
103		(2.19, 2.87)	
105		$(2.19,2.86)$	
120	(2.16, 2.98)	(2.21, 2.83)	(2.27, 2.76)
125	(2.17, 2.97)	(2.21, 2.84)	(2.27, 2.76)
130	(2.18, 2.96)	(2.22, 2.83)	(2.28, 2.75)
135	$(2.18,2.94)$	(2.23, 2.81)	(2.29, 2.74)
150	(2.19, 2.94)	(2.24, 2.81)	(2.29, 2.73)
200	$(2.23,2.87)$	$(2.27,2.77)$	$(2.32,2.71)$
215	(2.24, 2.85)	$(2.28,2.75)$	$(2.33,2.69)$
225	$(2.25,2.83)$	(2.29, 2.74)	(2.33, 2.69)
250	$(2.26,2.82)$	$(2.29,2.73)$	(2.33, 2.68)
300	$(2.28,2.79)$	(2.31, 2.72)	$(2.35,2.67)$
350	(2.30, 2.77)	(2.33, 2.69)	(2.37, 2.65)
400	(2.31, 2.75)	(2.34, 2.68)	(2.37, 2.64)
450	$(2.32,2.73)$	$(2.35,2.67)$	(2.38, 2.63)
500	$(2.33,2.72)$	(2.35, 2.66)	(2.38, 2.63)
600	$(2.34,2.71)$	(2.37, 2.65)	(2.40, 2.61)
700	$(2.36,2.69)$	$(2.38,2.64)$	(2.40, 2.61)
750	$(2.36,2.68)$	$(2.38,2.63)$	(2.41, 2.60)
800	$(2.36,2.67)$	$(2.39,2.63)$	(2.41, 2.60)
900	(2.37, 2.66)	(3.39, 2.62)	(2.42, 2.59)
1000	$(2.38,2.65)$	(2.40, 2.61)	(2.42, 2.59)

Number of observations	$\mathbf{9 5 \% ~ C I}$	$\mathbf{9 0 \% ~ C ~ I}$	$\mathbf{8 0 \% ~ C ~ I ~}$
1100	$(2.38,2.65)$	$(2.40,2.61)$	$(2.42,2.58)$
1200	$(2.39,2.64)$	$(2.41,2.60)$	$(2.43,2.58)$
1300	$(2.39,2.64)$	$(2.41,2.60)$	$(2.43,2.58)$
1400	$(2.39,2.63)$	$(2.41,2.60)$	$(2.43,2.57)$
1500	$(2.40,2.62)$	$(2.41,2.59)$	$(2.43,2.57)$
1600	$(2.42,2.59)$	$(2.44,2.57)$	
1700	$(2.42,2.59)$	$(2.44,2.57)$	

TARGET Z = 2.01 TARGET DPMO = 22215.6
Table 47 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper Limit
$\mathbf{1 5 \%} \%$ margin	$Z-0.15 Z=1.7085$	$Z+0.15 Z=2.3115$
10% margin	$Z-0.1 Z=181$	$Z+0.1 Z=2.21$
5% margin	$Z-0.05 Z=191$	$Z+0.05 Z=2.11$

Table 48 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	$\mathbf{9 5 \% ~ C ~ I}$	$\mathbf{9 0 \% ~ C ~ I}$	$\mathbf{8 0 \%} \mathbf{C ~ I}$
5	$(0.87,6.72)$	$(0.99,4.65)$	$(1.16,3.78)$
10	$(1.15,4.20)$	$(1.25,3.39)$	$(1.38,2.96)$
15	$(1.29,3.53)$	$(1.38,3.02)$	$(1.50,2.73)$
20	$(1.43,3.05)$	$(1.45,2.80)$	$(1.55,2.59)$
25	$(1.46,2.95)$	$(1.54,2.65)$	$(1.59,2.53)$
30		$(1.57,2.59)$	$(1.63,2.49)$
35			

Number of observations	95\% CI	90\% C I	80\% C I
40	$(1.53,2.80)$	(1.59, 2.54)	(1.68, 2.42$)$
45	$(1.55,2.72)$	$(1.61,2.50)$	(1.69, 2.38)
50	$(1.58,2.68)$	(1.64, 2.48)	(1.71, 2.36)
60	(1.61, 2.61)	$(1.66,2.44)$	(1.72, 2.33$)$
70	$(1.63,2.55)$	(1.69, 2.40)	(1.75, 2.30$)$
80	$(1.66,2.52)$	$(1.71,2.37)$	(1.77, 2.29)
90	$(1.68,2.49)$	(1.72, 2.35)	$(1.78,2.27)$
100	$(1.69,2.46)$	$(1.74,2.33)$	(1.79, 2.26)
115		(1.75, 2.31)	
120		$(1.76,2.30)$	
150	$(1.75,2.37)$	(1.79, 2.27)	(1.83, 2.21)
200	$(1.78,2.32)$	(1.81, 2.23)	$(1.85,2.18)$
225	$(1.79,2.30)$	(1.82, 2.22)	(1.87, 2.17$)$
250	(1.80, 2.29$)$	(1.83, 2.21$)$	(1.87, 2.16)
300	(1.82, 2.26)	(1.85, 2.18)	$(1.88,2.14)$
350	(1.83, 2.24)	(1.86, 2.18)	(1.89, 2.14$)$
400	(1.84, 2.23)	$(1.87,2.17)$	$(1.90,2.13)$
450	(1.86, 2.21)	$(1.88,2.15)$	(1.91, 2.12)
500	(1.86, 2.20)	$(1.88,2.15)$	(1.91, 2.12)
700	$(1.88,2.17)$	$(1.90,2.13)$	$(1.93,2.10)$
800	(1.89, 2.16)	(1.91, 2.12)	(1.93, 2.09$)$
850	(1.90, 2.15)	(1.91, 2.12)	(1.93, 2.09$)$
900	$(1.90,2.15)$	(1.92, 2.11)	(1.94, 2.09)
1000	(1.90, 2.15$)$	(1.92, 2.11)	(1.94, 2.09)
1100	(1.91, 2.13)	$(1.93,2.10)$	(1.95, 2.08)

Number of observations	$\mathbf{9 5 \% ~ C I}$	$\mathbf{9 0 \% ~ C I}$	$\mathbf{8 0 \%} \mathbf{C I}$
1200	$(1.92,2.13)$	$(1.93,2.10)$	$(1.95,2.08)$
1300	$(1.92,2.13)$	$(1.93,2.09)$	$(1.95,2.08)$
1400	$(1.92,2.12)$	$(1.94,2.09)$	$(1.95,2.07)$
1500	$(1.93,2.11)$	$(1.94,2.09)$	$(1.95,2.07)$
1600	$(1.93,2.11)$	$(1.94,2.09)$	$(1.96,2.07)$
1700			$(1.96,2.07)$

TARGET Z = 1.50 TARGET DPMO = 66807.2
Table 49 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper Limit
$\mathbf{1 5 \%}$ margin	$Z-0.15 Z=1.2750$	$Z+0.15 Z=1.7250$
10% margin	$Z-0.1 Z=135$	$Z+0.1 Z=1.65$
5% margin	$Z-0.05 Z=143$	$Z+0.05 Z=158$

Table 50 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	$\mathbf{9 5 \% ~ C I}$	$\mathbf{9 0 \% ~ C ~ I}$	$\mathbf{8 0 \% ~ C ~ I ~}$
10	$(0.76,3.27)$	$(0.85,2.55)$	$(0.96,2.27)$
20	$(0.94,2.53)$	$(1.03,2.18)$	$(1.11,2.00)$
30	$(1.04,2.26)$	$(1.10,2.02)$	$(1.18,1.89)$
40	$(1.13,2.06)$	$(1.15,1.94)$	$(1.22,1.83)$
50	$(1.19,1.96)$	$(1.19,1.89)$	$(1.25,1.79)$
60	$(1.20,192)$	$(1.21,1.84)$	$(1.27,1.19)$
70		$(1.25,1.80)$	$(1.29,1.75)$
80	$(1.30,172)$		

Number of observations	95\% CI	90\% C I	80\% CI
90	$(1.23,191)$	$(1.26,1.79)$	(1.31, 172)
100	$(1.24,188)$	$(1.27,176)$	$(1.32,170)$
130		$(1.30,173)$	
132		$(1.30,173)$	
135		$(1.30,172)$	
140		(1.31, 172)	
145		$(1.31,172)$	
150	$(1.28,180)$	$(1.31,172)$	$(1.35,167)$
175	$(1.29,178)$	$(1.32,170)$	$(1.36,166)$
185	$(1.30,177)$	$(1.33,170)$	$(1.37,165)$
200	$(1.30,176)$	$(1.33,168)$	$(1.37,164)$
250	$(1.33,172)$	$(1.36,166)$	$(1.39,163)$
275	$(1.33,172)$	$(1.36,166)$	$(1.39,162)$
300	$(1.35,1.70)$	$(1.37,165)$	$(1.40,161)$
350	$(1.36,1.70)$	$(1.38,164)$	$(1.40,161)$
400	$(1.36,1.67)$	$(1.38,163)$	$(1.41,160)$
450	$(1.37,167)$	$(1.39,162)$	$(1.41,159)$
500	$(1.38,166)$	$(1.40,162)$	$(1.42,159)$
600	$(1.39,1.65)$	$(1.40,161)$	$(1.42,158)$
700	$(1.40,164)$	$(1.41,160)$	$(1.43,1.58)$
800	$(1.40,163)$	$(1.42,159)$	$(1.44,1.57)$
900	$(1.41,162)$	$(1.42,159)$	$(1.44,1.57)$
1000	(1.41, 161)	$(1.43,158)$	(1.44, 1.56)
1100	$(1.41,161)$	$(1.43,158)$	(1.44, 1.56$)$
1200	$(1.42,160)$	$(1.43,157)$	$(1.45,156)$

Number of observations	$\mathbf{9 5 \% ~ C ~ I}$	$\mathbf{9 0 \% ~ C ~ I}$	$\mathbf{8 0 \% ~ C ~ I ~}$
1300	$(1.42,160)$	$(1.43,157)$	$(1.45,156)$
1400	$(1.43,159)$	$(1.44,157)$	$(1.45,155)$
1500	$(1.43,159)$	$(1.44,157)$	$(1.45,155)$
1600	$(1.43,159)$	$(1.44,157)$	$(1.46,155)$
1700		$(1.44,156)$	$(1.46,155)$

TARGET Z = 1.01 TARGET DPMO = 156247.6
Table 51 Reference intervals used to select the minimum number of observations for each level of precision

Precision	Lower limit	Upper Limit
$\mathbf{1 5 \%}$ margin	$Z-0.15 Z=0.8585$	$Z+0.15 Z=1.1615$
10% margin	$Z-0.1 Z=0.91$	$Z+0.1 Z=1.11$
5% margin	$Z-0.05 Z=0.96$	$Z+0.05 Z=106$

Table 52 Simulated confidence intervals of the benchmark Z for various numbers of observations

Number of observations	$95 \% \mathrm{CI}$	$90 \% \mathrm{CI}$	$80 \% \mathrm{CI}$
10	$(0.38,2.33)$	$(0.46,186)$	$(0.55,162)$
20	$(0.55,183)$	$(0.62,155)$	$(0.68,141)$
30	$(0.62,163)$	$(0.67,144)$	$(0.74,1.32)$
40	$(0.67,154)$	$(0.72,137)$	$(0.77,128)$
50	$(0.70,1.45)$	$(0.75,132)$	$(0.80,124)$
60	$(0.75,138)$	$(0.77,129)$	$(0.82,122)$
70	$(0.76,135)$	$(0.78,127)$	$(0.83,121)$
80	$(0.80,125)$	$(0.84,1.19)$	
90	$(0.81,123)$	$(0.85,118)$	

Number of observations	95\% CI	90\% C I	80\% CI
100	$(0.78,131)$	(0.81, 122)	(0.85, 117)
150	(0.82, 125)	(0.84, 1.18)	(0.88, 1.14)
185		$(0.86,116)$	
187		(0.87, 116)	
190		$(0.87,116)$	
200	$(0.85,121)$	(0.87, 115)	(0.90, 112)
250	$(0.86,119)$	$(0.88,114)$	$(0.91,111)$
300	(0.87, 118)	$(0.89,113)$	$(0.92,110)$
350	$(0.88,116)$	$(0.90,112)$	(0.92, 109)
400	$(0.89,114)$	$(0.91,111)$	$(0.93,108)$
450	$(0.89,114)$	(0.91, 111)	$(0.93,108)$
500	(0.90, 1.13)	(0.92, 110)	(0.94, 108)
600	(0.91, 112)	$(0.93,109)$	$(0.94,107)$
700	(0.92, 111)	$(0.93,108)$	$(0.95,107)$
800	$(0.93,111)$	(0.94, 108)	$(0.95,106)$
900	$(0.93,110)$	$(0.94,107)$	(0.95, 106)
1000	(0.93, 109)	$(0.94,107)$	(0.96, 106)
1100	(0.94, 109)	$(0.95,107)$	(0.96, 105)
1200	(0.94, 109)	(0.95, 106)	(0.96, 105)
1300	$(0.94,108)$	$(0.95,106)$	(0.96, 105)
1400	(0.94, 108)	(0.95, 106)	(0.97, 105)
1500	$(0.95,108)$	(0.95, 106)	(0.97, 105)
1600	$(0.95,108)$	(0.96, 106)	(0.97, 105)
1700	$(0.95,107)$	(0.96, 106)	$(0.97,104)$

© 2015, 2017 Minitab Inc. All rights reserved.
Minitab \circledR^{\circledR}, Quality. Analysis. Results. $®$ and the Minitab $®$ logo are all registered trademarks of Minitab, Inc., in the United States and other countries. See minitab.com/legal/trademarks for more information.

