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This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

Capability Analysis 

Overview 
Capability analysis is used to evaluate whether a process is capable of producing output that 

meets customer requirements. The Minitab Assistant includes two capability analyses to examine 

continuous process data. 

 Capability Analysis: This analysis evaluates capability based on a single process variable.  

 Before/After Capability Comparison: This analysis evaluates whether an improvement 

effort made the process more capable of meeting customer requirements, by examining 

a single process variable before and after the improvement. 

To adequately estimate the capability of the current process and to reliably predict the capability 

of the process in the future, the data for these analyses should come from a stable process 

(Bothe, 1991; Kotz and Johnson, 2002). In addition, because these analyses estimate the 

capability statistics based on the normal distribution, the process data should follow a normal or 

approximately normal distribution. Finally, there should be enough data to ensure that the 

capability statistics have good precision and that the stability of the process can be adequately 

evaluated. 

Based on these requirements, the Assistant automatically performs the following checks on your 

data and displays the results in the Report Card: 

 Stability 

 Normality 

 Amount of data 

In this paper, we investigate how these requirements relate to capability analysis in practice and 

describe how we established our guidelines to check for these conditions. 
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Data checks 

Stability 
To accurately estimate process capability, your data should come from a stable process. You 

should verify the stability of your process before you check whether the data is normal and 

before you evaluate the capability of the process. If the process is not stable, you should identify 

and eliminate the causes of the instability. 

Eight tests can be performed on variables control charts (Xbar-R/S or I-MR chart) to evaluate the 

stability of a process with continuous data. Using these tests simultaneously increases the 

sensitivity of the control chart. However, it is important to determine the purpose and added 

value of each test because the false alarm rate increases as more tests are added to the control 

chart.  

Objective 

We wanted to determine which of the eight tests for stability to include with the variables 

control charts in the Assistant. Our first goal was to identify the tests that significantly increase 

sensitivity to out-of-control conditions without significantly increasing the false alarm rate. Our 

second goal was to ensure the simplicity and practicality of the chart. Our research focused on 

the tests for the Xbar chart and the I chart. For the R, S, and MR charts, we use only test 1, which 

signals when a point falls outside of the control limits. 

Method 

We performed simulations and reviewed the literature to evaluate how using a combination of 

tests for stability affects the sensitivity and the false alarm rate of the control charts. In addition, 

we evaluated the prevalence of special causes associated with the test. For details on the 

methods used for each test, see the Results section below and Appendix B. 

Results 

We found that Tests 1, 2, and 7 were the most useful for evaluating the stability of the Xbar 

chart and the I chart: 

TEST 1: IDENTIFIES POINTS OUTSIDE OF THE CONTROL LIMITS 

Test 1 identifies points > 3 standard deviations from the center line. Test 1 is universally 

recognized as necessary for detecting out-of-control situations. It has a false alarm rate of only 

0.27%. 

TEST 2: IDENTIFIES SHIFTS IN THE MEANS 

Test 2 signals when 9 points in a row fall on the same side of the center line. We performed a 

simulation using 4 different means, set to multiples of the standard deviation, and determined 
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the number of subgroups needed to detect a signal. We set the control limits based on the 

normal distribution. We found that adding test 2 significantly increases the sensitivity of the 

chart to detect small shifts in the mean. When test 1 and test 2 are used together, significantly 

fewer subgroups are needed to detect a small shift in the mean than are needed when test 1 is 

used alone. Therefore, adding test 2 helps to detect common out-of-control situations and 

increases sensitivity enough to warrant a slight increase in the false alarm rate.  

TEST 7: IDENTIFIES CONTROL LIMITS THAT ARE TOO WIDE 

Test 7 signals when 12-15 points in a row fall within 1 standard deviation of the center line. Test 

7 is used only for the XBar chart when the control limits are estimated from the data. When this 

test fails, the cause is usually a systemic source of variation (stratification) within a subgroup, 

which is often the result of not forming rational subgroups. Because forming rational subgroups 

is critical for ensuring that the control chart can accurately detect out-of-control situations, the 

Assistant uses a modified test 7 when estimating control limits from the data. Test 7 signals a 

failure when the number of points in a row is between 12 and 15, depending on the number of 

subgroups: 

k = (Number of Subgroups) x 0.33 Points required 

k < 12 12 

  

k > 15 15 

 

Tests not included in the Assistant 

TEST 3: K POINTS IN A ROW, ALL INCREASING OR ALL DECREASING 

Test 3 is designed to detect drifts in the process mean (Davis and Woodall, 1988). However, 

when test 3 is used in addition to test 1 and test 2, it does not significantly increase the 

sensitivity of the chart to detect drifts in the process mean. Because we already decided to use 

tests 1 and 2 based on our simulation results, including test 3 would not add any significant 

value to the chart. 

TEST 4: K POINTS IN A ROW, ALTERNATING UP AND DOWN 

Although this pattern can occur in practice, we recommend that you look for any unusual trends 

or patterns rather than test for one specific pattern. 

TEST 5: K OUT OF K+1 POINTS > 2 STANDARD DEVIATIONS FROM CENTER LINE 

To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify 

special cause situations that are common in practice. 
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TEST 6:  K OUT OF K+1 POINTS > 1 STANDARD DEVIATION FROM THE CENTER LINE 

To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify 

special cause situations that are common in practice. 

TEST 8: K POINTS IN A ROW > 1 STANDARD DEVIATION FROM CENTER LINE (EITHER SIDE) 

To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify 

special cause situations that are common in practice. 

When checking stability in the Report Card, the Assistant displays the following status indicators: 

Status Condition 

 

No test failures on the chart for the mean (I chart or Xbar chart) and the chart for variation (MR, R, or 
S chart). The tests used for each chart are:  

I chart: Test 1 and Test 2. 

Xbar chart: Test 1, Test 2 and Test 7. Test 7 is only performed when control limits are estimated from 
the data. 

MR, R and S charts: Test 1. 

 
If above condition does not hold.  

 

The specific messages that accompany each status condition are phrased in the context of 

capability analysis; therefore, these messages differ from those used when the variables control 

charts are displayed separately in the Assistant. 

Normality 
In normal capability analysis, a normal distribution is fit to the process data and the capability 

statistics are estimated from the fitted normal distribution. If the distribution of the process data 

is not close to normal, these estimates may be inaccurate. The probability plot and the 

Anderson-Darling (AD) goodness-of-fit test can be used to evaluate whether data are normal. 

The AD test tends to have higher power than other tests for normality. The test can also more 

effectively detect departures from normality in the lower and higher ends (tails) of a distribution 

(D’Agostino and Stephens, 1986). These properties make the AD test well-suited for testing the 

goodness-of-fit of the data when estimating the probability that measurements are outside the 

specification limits.  

Objective 

Some practitioners have questioned whether the AD test is too conservative and rejects the 

normality assumption too often when the sample size is extremely large. However, we could not 

find any literature that discussed this concern. Therefore, we investigated the effect of large 

sample sizes on the performance of the AD test for normality.  
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We wanted to find out how closely the actual AD test results matched the targeted level of 

significance (alpha, or Type I error rate) for the test; that is, whether the AD test incorrectly 

rejected the null hypothesis of normality more often than expected when the sample size was 

large. We also wanted to evaluate the power of the test to identify nonnormal distributions; that 

is, whether the AD test correctly rejected the null hypothesis of normality as often as expected 

when the sample size was large. 

Method 

We performed two sets of simulations to estimate the Type I error and the power of the AD test. 

TYPE I ERROR: THE PROBABILITY OF REJECTING NORMALITY WHEN THE DATA ARE FROM A 
NORMAL DISTRIBUTION 

To estimate the Type I error rate, we first generated 5000 samples of the same size from a 

normal distribution. We performed the AD test for normality on every sample and calculated the 

p-value. We then determined the value of k, the number of samples with a p-value that was less 

than or equal to the significance level. The Type I error rate can then be calculated as k/5000. If 

the AD test performs well, the estimated Type I error should be very close to the targeted 

significance level.  

POWER: THE PROBABILITY OF REJECTING NORMALITY WHEN THE DATA ARE NOT FROM A 
NORMAL DISTRIBUTION 

To estimate the power, we first generated 5000 samples of the same size from a nonnormal 

distribution. We performed the AD test for normality on every sample and calculated the p-

value. We then determined the value of k, the number of samples with a p-value that was less 

than or equal to the significance level. The power can then be calculated as k/5000. If the AD 

test performs well, the estimated power should be close to 100%. 

We repeated this procedure for samples of different sizes and for different normal and 

nonnormal populations. For more details on the methods and results, see Appendix B.  

Results 

TYPE I ERROR 

Our simulations showed that when the sample size is large, the AD test does not reject the null 

hypothesis more frequently than expected. The probability of rejecting the null hypothesis when 

the samples are from a normal distribution (the Type I error rate) is approximately equal to the 

target significance level, such as 0.05 or 0.1, even for sample sizes as large as 10,000.  

POWER 

Our simulations also showed that for most nonnormal distributions, the AD test has a power 

close to 1 (100%) to correctly reject the null hypothesis of normality. The power of the test was 

low only when the data were from a nonnormal distribution that was extremely close to a 
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normal distribution.  However, for these near normal distributions, a normal distribution is likely 

to provide a good approximation for the capability estimates. 

Based on these results, the Assistant uses a probability plot and the Anderson-Darling (AD) 

goodness-of-fit test to evaluate whether the data are normal. If the data are not normal, the 

Assistant tries to transform the data using the Box-Cox transformation. If the transformation is 

successful, the transformed data are evaluated for normality using the AD test. 

This process is shown in the flow chart below. 

 

 

Based on these results, the Assistant Report Card displays the following status indicators when 

evaluating normality in capability analysis: 

Status Condition 

 

 

or 

The original data did not pass the AD normality test (p < 0.05), but the user has chosen to transform 
the data with Box-Cox and the  
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Status Condition 

 

The original data did not pass the AD normality test (p < 0.05). The Box-Cox transformation corrects 
the problem, but the user has chosen not to transform the data. 

or 

The original data did not pass the AD normality test (p < 0.05). The Box-Cox transformation cannot 
be successfully performed on the data to correct the problem. 

 

Amount of data 
To obtain precise capability estimates, you need to have enough data. If the amount of data is 

insufficient, the capability estimates may be far from the “true” values due to sampling 

variability. To improve precision of the estimate, you can increase the number of observations. 

However, collecting more observations requires more time and resources. Therefore, it is 

important to know how the number of observations affects the precision of the estimates, and 

how much data is reasonable to collect based on your available resources.  

Objective 

We investigated the number of observations that are needed to obtain precise estimates for 

normal capability analysis. Our objective was to evaluate the effect of the number of 

observations on the precision of the capability estimates and to provide guidelines on the 

required amount of data for users to consider.  

Method 

We reviewed the literature to find out how much data is generally considered adequate for 

estimating process capability. In addition, we performed simulations to explore the effect of the 

number of observations on a key process capability estimate, the process benchmark Z. We 

generated 10,000 normal data sets, calculated Z bench values for each sample, and used the 

results to estimate the number of observations needed to ensure that the difference between 

the estimated Z and the true Z falls within a certain range of precision, with 90% and 95% 

confidence. For more details, see Appendix C. 

Results 

The Statistical Process Control (SPC) manual recommends using enough subgroups to ensure 

that the major sources of process variation are reflected in the data (AIAG, 1995). In general, 

they recommend collecting at least 25 subgroups, and at least 100 total observations. Other 

sources cite an “absolute minimum” of 30 observations (Bothe, 1997), with a preferred minimum 

of 100 observations. 

Our simulation showed that the number of observations that are needed for capability estimates 

depends on the true capability of the process and the degree of precision that you want your 

estimate to have. For common target Benchmark Z values (Z >3), 100 observations provide 90% 
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confidence that the estimated process benchmark Z falls within a 15% margin of the true Z value 

(0.85 * true Z, 1.15 * true Z). For more details, see Appendix C. 

When checking the amount of data for capability analysis, the Assistant Report Card displays the 

following status indicators: 

Status Condition 

 
Number of observations is > 100. 

 
Number of observations is < 100.  
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Appendix A: Stability 

Simulation A1: How adding test 2 to test 1 affects 
sensitivity 
Test 1 detects out-of-control points by signaling when a point is greater than 3 standard 

deviations from the center line. Test 2 detects shifts in the mean by signaling when 9 points in a 

row fall on the same side of the center line. 

To evaluate whether using test 2 with test 1 improves the sensitivity of the means charts (I chart 

and Xbar chart), we established control limits for a normal (0, SD) distribution. We shifted the 

mean of the distribution by a multiple of the standard deviation and then recorded the number 

of subgroups needed to detect a signal for each of 10,000 iterations. The results are shown in 

Table 1. 

Table 1  Average number of subgroups until a test 1 failure (Test 1), test 2 failure (Test 2), or test 

1 or test 2 failure (Test 1 or 2). The shift in mean equals a multiple of the standard deviation (SD) 

and the simulation was performed for subgroup sizes n = 1, 3 and 5. 

 n=1 n=3 n=5 

Shift Test 1 Test 2 Test 1 
or 2 

Test 1 Test 2 Test 1 
or 2 

Test 1 Test 2 Test 1 
or 2 

0.5 SD 154 84 57 60 31 22 33 19 14 

1 SD 44 24 17 10 11 7 4 10 4 

1.5 SD 15 13 9 3 9 3 1.6 9 1.6 

2 SD 6 10 5 1.5 9 1.5 1.1 9 1.1 

 

As seen in the results for the I chart (n= 1), when both tests are used (Test 1 or 2 column) an 

average of 57 subgroups are needed to detect a 0.5 standard deviation shift in the mean, 

compared to an average of 154 subgroups needed to detect a 0.5 standard deviation shift when 

test 1 is used alone. Similarly, using both tests increases the sensitivity for the Xbar chart (n = 3, 

n = 5). For example, for a subgroup size of 3, an average of 22 subgroups are needed to detect a 

0.5 standard deviation shift when both test 1 and test 2 are used, whereas 60 subgroups are 

needed to detect a 0.5 standard deviation shift when test 1 is used alone. Therefore, using both 

tests significantly increases sensitivity to detect small shifts in the mean. As the size of the shift 

increases, adding test 2 does not significantly increase the sensitivity. 
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Simulation B2: How effectively does Test 7 detect 
stratification (multiple sources of variability in 
subgroups)? 
Test 7 typically signals a failure when between 12 and 15 points in a row fall within one standard 

deviation of the center line. The Assistant uses a modified rule that adjusts the number of points 

required based on the number of subgroups in the data. We set k = (number of subgroups * 

0.33) and define the points in a row required for a test 7 failure as shown in Table 2.  

Table 2  Points in a row required for a failure on test 7 

k = (Number of Subgroups) x 0.33 Points required 

k < 12 12 

  

k > 15 15 

 

Using common scenarios for setting control limits, we performed a simulation to determine the 

likelihood that test 7 will signal a failure using the above criteria. Specifically, we wanted to 

evaluate the rule for detecting stratification during the phase when control limits are estimated 

from the data.  

We randomly chose m subgroups of size n from a normal distribution with a standard deviation 

(SD). Half of the points in each subgroup had a mean equal to 0 and the other half had a mean 

equal to the SD shift (0 SD, 1 SD, or 2 SD). We performed 10,000 iterations and recorded the 

percentage of charts that showed at least one test 7 failure, as shown in Table 3.  

Table 3  Percentage of charts that have at least one signal from Test 7 

Number of subgroups 

Subgroup size 

Test 

m = 50 

n = 2 

15 in a row 

m = 75 

n = 2 

15 in a row 

m = 25 

n = 4 

12 in a row 

m = 38 

n = 4 

13 in a row 

m = 25 

n = 6 

12 in a row 

Shift 

0 SD 5% 8% 7% 8% 7% 

1 SD 23% 33% 17% 20% 15% 

2 SD 83% 94% 56% 66% 50% 

 

As seen in the first Shift row of the table (shift = 0 SD), when there is no stratification, a relatively 

small percentage of charts have at least one test 7 failure. However, when there is stratification 

(shift = 1 SD or shift = 2 SD), a much higher percentage of charts—as many as 94%—have at 
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least one test 7 failure. In this way, test 7 can identify stratification in the phase when the control 

limits are estimated.  
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Appendix B: Normality 

Simulation B.1: Estimating Type I error rate for the  
AD test 
To investigate the Type I error rate of the AD test for large samples, we generated different 

dispersions of the normal distribution with a mean of 30 and standard deviations of 0.1, 5, 10, 

30, 50 and 70. For each mean and standard deviation, we generated 5000 samples with sample 

size n = 500, 1000, 2000, 3000, 4000, 5000, 6000, and 10000, respectively, and calculated the p-

value of the AD statistic. We then estimated the probabilities of rejecting normal distribution 

given a normal data set by the proportion of the p-values ≤ 0.05, and ≤ 0.1 out of the 5000 

samples. The results are shown in Tables 4-9 below. 

Table 4  Type I Error Rate for Mean = 30, Standard Deviation = 0.1, for each sample size (n) and 

p-value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 6000 10000 

Proportion of data 
sets with p-
0.05  

0.0514 0.0480 0.0526 0.0458 0.0492 0.0518 0.0582 0.0486 

Proportion of data 
sets with p-  

0.1008 0.1008 0.0984 0.0958 0.1004 0.1028 0.1046 0.0960 

 

Table 5  Type I Error Rate for Mean = 30, Standard Deviation = 5, for each sample size (n) and p-

value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 6000 10000 

Proportion of data 
sets with p-
0.05  

0.0524 0.0520 0.0446 0.0532 0.0481 0.0518 0.0594 0.0514 

Proportion of data 
sets with p-  

0.0990 0.1002 0.0990 0.1050 0.0965 0.1012 0.1074 0.1030 
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Table 6  Type I Error Rate for Mean = 30, Standard Deviation = 10, for sample size (n) and  

p-value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 6000 10000 

Proportion of data sets 
with p-  

0.0486 0.0488 0.0498 0.0500 0.0458 0.0470 0.0446 0.0524 

Proportion of data sets 
with p-  

0.1008 0.0964 0.0988 0.1076 0.0930 0.0942 0.0924 0.1062 

 

Table 7  Type I Error Rate for Mean = 30, Standard Deviation = 30, for each sample size (n) and 

p-value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 6000 10000 

Proportion of data sets 
with p-  

0.0514 0.0432 0.0506 0.0486 0.0558 0.0482 0.0508 0.0482 

Proportion of data sets 
with p-  

0.1028 0.0888 0.0978 0.0994 0.1012 0.0994 0.0992 0.0932 

 

Table 8  Type I Error Rate for Mean = 30, Standard Deviation = 50, for each sample size (n) and 

p-value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 6000 10000 

Proportion of data sets 
with p-  

0.0470 0.0530 0.0520 0.0460 0.0540 0.0444 0.0458 0.0472 

Proportion of data sets 
with p-  

0.0950 0.0996 0.1072 0.0940 0.0996 0.0980 0.0890 0.0940 

 

Table 9  Type I Error Rate for Mean = 30, Standard Deviation = 70, for each sample size (n) and 

p-value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 6000 10000 

Proportion of data sets 
with p-  

0.0520 0.0524 0.0522 0.0528 0.0502 0.0442 0.0500 0.0422 

Proportion of data sets 
with p-  

0.1038 0.1040 0.1020 0.0994 0.0990 0.0926 0.0994 0.0964 

 

In every table, the proportions in row 2 are close to 0.05, and the proportions in row 3 are close 

to 0.1, which indicates that the type I error rate is as expected based on the targeted level of 

significance (0.5 or 0.1, respectively). Therefore, even for large samples and for various 
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dispersions of the normal distribution, the AD is not conservative but rejects the null hypothesis 

as often as would be expected based on the targeted level of significance. 

Simulation B.2: Estimating the power of the AD test 
To investigate the power of the AD test to detect nonnormality for large samples, we generated 

data from many nonnormal distributions, including nonnormal distributions commonly used to 

model process capability. For each distribution, we generated 5000 samples at each sample size 

(n = 500, 1000, 3000, 5000, 7500, and 10000, respectively) and calculated the p-values for the 

AD statistics. Then, we estimated the probability of rejecting the AD test for nonnormal data sets 

by calculating the proportions of p-values ≤ 0.05, and p-values ≤ 0.1 out of the 5000 samples.  

The results are shown in Tables 10-26 below. 

Table 10  Power for t distribution with df = 3 for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 11  Power for t distribution with df = 5 for each sample size (n) and p-value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

0.9812 0.9998 1.00 1.00 1.00 1.00 0.9812 0.9998 

Proportion of data sets 
with p-  

0.9890 0.9998 1.00 1.00 1.00 1.00 0.9890 0.9998 

 

Table 12  Power for Laplace (0,1) distribution for each sample size (n) and p-value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 13  Power for Uniform (0,1) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 14  Power for Beta (3,3) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

0.7962 0.9944 1.00 1.00 1.00 1.00 0.7962 0.9944 

Proportion of data sets 
with p-  

0.8958 0.9944 1.00 1.00 1.00 1.00 0.8958 0.9944 

 

Table 15  Power for Beta (8,1) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 16  Power for Beta (8,1) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 17  Power for Expo (2) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 18  Power for Chi-Square (3) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 19  Power for Chi-Square (5) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 20  Power for Chi-Square (10) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 21  Power for Gamma (2, 6) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 22  Power for Gamma(5, 6) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 23  Power for Gamma(10, 6) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

0.9970 1.00 1.00 1.00 1.00 1.00 0.9970 1.00 

Proportion of data sets 
with p-  

0.9988 1.00 1.00 1.00 1.00 1.00 0.9988 1.00 

 

Table 24  Power for Weibull(1, 4) distribution for each sample size (n) and p-value (0.05, 0.1) 

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 25  Power for Weibull(4, 4) distribution for each sample size (n) and p-value (0.05, 0.1)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

0.1816 0.3406 0.8502 0.9840 0.9992 1.00 0.1816 0.3406 

Proportion of data sets 
with p-  

0.2818 0.4754 0.9198 0.9928 1.00 1.00 0.2818 0.4754 

 

Table 26  Power for Weibull(20, 4) distribution for each sample size (n) and p-value (0.05, 0.01)  

Sample size (n) 500 1000 2000 3000 4000 5000 7500 10000 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Proportion of data sets 
with p-  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

As seen in the above tables, in almost every nonnormal distribution we investigated, the 

calculated power of the AD test was almost always 100% (1.00) or nearly 100%, which indicates 

that the AD test correctly rejects the null hypothesis and detects nonnormality for most large 

samples of nonnormal data. Therefore, the test has extremely high power. 

The calculated power of the AD test was significantly less than 100% in only two cases: for the 

beta (3,3) distribution when n= 500 (Table 14) and for the Weibull (4,4) distribution when n = 

500, 1000, and 3000 (Table 25). However, both of these distributions are not far from a normal 

distribution, as shown in Figures 1 and 2 below.  
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Figure 1  Comparison of the beta (3,3) distribution and a normal distribution. 

As shown in Figure 1 above, the beta (3,3) distribution is close to a normal distribution. This 

explains why there is a reduced proportion of data sets for which the null hypothesis of 

normality is rejected by the AD test when the sample size is less than 1000.  
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Figure 2  Comparison of the Weibull (4,4) distribution and a normal distribution. 

Similarly, the Weibull (4,4) distribution is very close to a normal distribution, as shown in Figure 

2. In fact, it is difficult to distinguish this distribution from a normal distribution. In this situation, 

a normal distribution can be a good approximation to the true distribution, and the capability 

estimates based on a normal distribution should provide a reasonable representation of the 

process capability. 
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Appendix C: Amount of data 

Simulation C.1: Determining sample 

sizes required for various levels of 

precision 

Setup and procedure 

Without loss of generality, we generated samples using the following means and standard 

deviations, assuming a lower spec limit (LSL) = -1 and an upper spec limit (USL) = 1: 

Table 27  Mean, standard deviation, and target Z values for samples 

Mean Standard 
deviation 

Target Z 

0  0.163 6.02 

0.1  0.163 5.52 

0.2  0.160 5.00 

0.2 0.177 4.52 

0 0.240 4.01 

0.1 0.256 3.51 

0.2 0.265 3.02 

0.1 0.352 2.50 

0 0.437 2.01 

0 0.545 1.50 

0.1 0.700 1.01 
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We calculated the target Z values (the true Z) using the following formula, where μ is the mean 

and σ is the standard deviation:  

)/)(()(Pr1  LSLLSLXobp .

)./)(()/)((1)(Pr2  USLUSLUSLXobp   

Target )()1( 21

1

21

1 ppppZ  
 

To perform the simulation, we followed these steps:  

1. Generate 10,000 normal data sets with a different sample size for each target Z (shown in 

Table 27 above). 

2. Calculate the Z bench values using the generated data sets. For each target Z and sample 

size, there were 10,000 Z values.  

3. Sort the 10,000 Z values from least to greatest. The 95% CI for Z bench was formed by 

using the (250th, 9750th) estimated Z values; the 90% CI by using (500th, 9500th) 

estimated Z values; and the 80% CI by using (1000th, 9000Th) estimated Z values.  

4. Identify the number of observations that result in a difference between the estimated Z 

and the true Z value within a certain range (precision) at the selected confidence levels.  

To perform step 4 of the simulation, we first needed to determine the range, or level of 

precision, that was appropriate to use in selecting the sample size. No single level of precision 

can be successfully applied in all situations because the precision that is needed depends on the 

true value of Z being estimated. For example, the table below shows the relationship between 

fixed levels of precision and the defect per million opportunities (DPMO) for two different Z 

values: 

Table 28  Relationship between true Z, DPMO, and level of precision 

 True Z = 4.5, DPMO=3.4 True Z = 2.5, DPMO = 6209.7 

Precision Lower DPMO  Upper DPMO Lower DPMO Upper DPMO 

True Z +/- 0.1 2.0 4.4 4661.2 8197.5 

True Z +/- 0.2 1 8.5 3467.0 10724.1 

True Z +/- 0.3 0.79 13.3 2555.0 13903.0 

 

As shown in the table, if the Z value is 4.5, all three levels of precision (+/-0.1, +/0.2, and +/0.3 ) 

can be considered because in most applications the resulting difference in the values of the 

lower DPMO and the upper DPMO, such as 0.79 vs. 13.3, may not make much practical 

difference. However, if the true Z value is 2.5, the levels of precision +/-0.2 and +/-0.3 may not 

be acceptable. For example, at the +/-0.3 level of precision, the upper DPMO is 13,903, which is 
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substantially different from the lower DPMO value of 6209. Therefore, it seems that precision 

should be chosen based on the true Z value.  

For our simulation, we used the following three levels of precision to identify the number of 

observations that are required. 

Table 29  Levels of precision for Z for simulation 

Margin Calculation Range of Z 

15% True Z +/- 0.15 * True Z (0.85 True Z, 1.15 True Z) 

10% True Z +/- 0.1 * True Z (0.9 True Z, 1.1 True Z) 

5% True Z +/- 0.1 * True Z  (0.95 True Z, 1.05 True Z) 

 

SUMMARY OF RESULTS 

The main results of the simulation are shown in table 30 below. The table shows the number of 

observations required for different target Z values at each of the three levels of precision, with 

90% confidence.  

Table 30  Required number of observations for each precision margin at the 90% confidence 

level  

  Number of observations 

Target Z Target DPMO 15% Margin 10% Margin 5% Margin 

6.02 0.00085 85 175 675 

5.52 0.01695 85 175 650 

5.00 0.28665 87 175 625 

4.52 3.09198 90 175 600 

4.01 30.36 83 175 650 

3.51 224.1 90 185  650 

3.02 1263.9 94 200 700 

2.50 6209.7 103 215 750 

2.01 22215.6 115 225 900 

1.50 66807.2 135 300 1000 

1.01 156247.6 185 400 1600 

 



 

CAPABILITY ANALYSIS 25 

Notice that as the margin of precision becomes narrower, the number of observations required 

increases. In addition, if we increase the confidence level from 90% to 95%, substantially more 

observations are needed, which is evident in the detailed simulation results shown in tables 31-

52 in the section below. 

Based on the results of the simulation, we conclude that: 

1. The number of observations required to produce reasonably precise capability estimates 

varies with the true capability of the process.  

2. For common target Benchmark Z values (Z >3), using a minimum of 100 observations, 

you have approximately 90% confidence that your estimated process benchmark Z is 

within 15% of the true Z value (0.85 * true Z, 1.15 * true Z). If you increase the number of 

observations to 175 or more, the precision of the estimated benchmark Z falls within a 

10% margin (0.9 * true Z, 1.1 * true Z). 

DETAILED SIMULATION RESULTS 

The following tables show the specific results of the simulation that were summarized in Table 

30 above. For each target Z, and for each confidence level and each level of precision, we 

identify the minimum number of observations such that the corresponding confidence interval 

lies inside the referenced interval.  

For example, in the first set of results shown below, when target Z = 6.02, the reference interval 

for the 15% margin of precision is calculated to be (5.117, 6.923) as shown in row 1 of Table 31. 

Note that in Table 32, at 90% confidence, the intervals in column 3 do not lie within this 

reference interval until the number of observations increases to 85. Therefore, 85 is the 

estimated minimum number of observations needed to achieve 90% confidence with a 15% 

margin of precision when the target Z is 6.02. The results for the confidence levels and precision 

margins for the other target Z values in tables 33-51 can be interpreted similarly. 

TARGET Z= 6.02 TARGET DPMO = 0.00085 

Table 31  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper Limit 

15% margin Z  0.15Z = 5.117 Z + 0.15Z = 6.923 

10% margin Z  0.1Z = 5.42 Z + 0.1Z = 6.62 

5% margin Z  0.05Z = 5.72 Z + 0.05Z = 6.32 
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Table 32  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

5 (3.36, 20.97) (3.64, 13.91) (4.04, 11.22)  

10 (3.97, 11.82) (4.23, 9.65) (4.54, 8.63) 

15 (4.26, 10.14) (4.49, 8.65) (4.79, 7.95) 

20 (4.47, 9.40) (4.67, 8.16) (4.93, 7.63) 

25 (4.60, 8.82) (4.79, 7.87) (5.01, 7.43) 

30 (4.70, 8.49) (4.88, 7.65) (5.10, 7.25) 

35 (4.78, 8.23) (4.95, 7.52) (5.16, 7.12) 

40 (4.86, 8.08) (5.02, 7.43) (5.22, 7.09) 

45 (4.90, 7.89) (5.05, 7.30) (5.26, 7.00) 

50 (4.94, 7.78) (5.09, 7.25) (5.28, 6.93) 

60 (5.05, 7.55) (5.18, 7.08) (5.34, 6.81) 

70 (5.11, 7.43) (5.24, 6.97) (5.39, 6.75) 

80 (5.15, 7.32) (5.28, 6.94) (5.43, 6.71) 

85  (5.30, 6.92)  

90 (5.20, 7.23) (5.32, 6.87) (5.46, 6.67) 

100 (5.24, 7.15) (5.35, 6.83) (5.48, 6.64) 

105 (5.26, 7.13) (5.37, 6.81) (5.51, 6.63) 

110 (5.27, 7.10) (5.38, 6.78) (5.51, 6.60) 

120 (5.31, 7.07) (5.41, 6.73) (5.54, 6.55) 

130 (5.34, 7.00) (5.44, 6.71) (5.56, 6.55) 

140 (5.35, 6.97) (5.45, 6.70) (5.57, 6.54) 

150 (5.37, 6.89) (5.47, 6.67) (5.58, 6.51) 

175 (5.42, 6.87) (5.50, 6.62) (5.62, 6.48) 

200 (5.46, 6.77) (5.54, 6.55) (5.64, 6.43) 
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Number of 
observations 

95% CI 90% CI 80% CI 

250 (5.51, 6.71) (5.58, 6.51) (5.67, 6.40) 

300 (5.56, 6.62) (5.63, 6.46) (5.71, 6.36) 

350 (5.59, 6.59) (5.65, 6.43) (5.73, 6.34) 

400 (5.62, 6.54) (5.68, 6.40) (5.75, 6.32) 

450 (5.62, 6.51) (5.69, 6.38) (5.76, 6.30) 

500 (5.65, 4.50) (5.71, 6.36) (5.78, 6.28) 

550 (5.68, 6.46) (5.73, 6.35) (5/79, 6.27) 

650 (5.71, 6.43) (5.75, 6.32) (5.81, 6.24) 

700 (5.71, 6.41) (5.76, 6.31) (5.81, 6.24) 

900 (5.75, 6.37) (5.79, 6.27) (5.84, 6.21) 

1000 (5.76, 6.34) (5.80, 6.26) (5.85, 6.20) 

1050 (5.77, 6.35) (5.81, 6.25) (5.85, 6.20) 

1100 (5.77, 6.33) (5.81, 6.25) (5.86, 6.20) 

1150 (5.78, 6.32) (5.82, 6.25) (5.86, 6.20) 

1200 (5.78, 6.33) (5.82, 6.24) (5.86, 6.18) 

1250 (5.79, 6.32) (5.82, 6.23) (5.87, 6.18) 

1300 (5.80, 6.31) (5.83, 6.23) (5.87, 6.18) 

1350 (5.80, 6.30) (5.83, 6.22) (5.87, 6.18) 

1400 (5.80, 6.30) (5.83, 6.22) (5.88, 6.18) 

1450 (5.80, 6.28) (5.84, 6.22) (5.88, 6.17) 

1500 (5.81, 6.28) (5.84, 6.21) (5.88, 6.17) 

1550 (5.81, 6.28) (5.84, 6.21) (5.88, 6.17) 

1600 (5.81, 6.28) (5.85, 6.21) (5.88, 6.17) 

1650 (5.81, 6.28) (5.85, 6.21) (5.89, 6.17) 

1700 (5.81, 6.27) (5.85, 6.20) (5.89, 6.17) 
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TARGET Z = 5.52 TARGET DPMO = 0.01695 

Table 33  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper Limit 

15% margin Z  0.15Z = 4.6920 Z + 0.15Z = 6.3480 

10% margin Z  0.1Z = 4.97 Z + 0.1Z = 6.07 

5% margin Z  0.05Z = 5.24 Z + 0.05Z = 5.80 

 

Table 34  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

5 (3.18, 18.68) (3.49, 12.87) (3.86, 10.62) 

10 (3.68, 11.28) (3.92, 9.12) (4.22, 8.14) 

15 (3.99, 9.38) (4.20, 8.03)  (4.46, 7.40) 

20 (4.15, 8.74) (4.34, 7.64) (4.59, 7.08) 

25 (4.27, 8.18) (4.45, 7.32) (4.67, 6.86) 

30 (4.36, 7.80) (4.52, 7.13) (4.75, 6.72) 

35 (4.43, 7.61) (4.59, 6.94) (4.79, 6.60) 

40 (4.47, 7.45) (4.64, 6.84) (4.82, 6.53) 

45 (4.56, 7.23) (4.69, 6.73) (4.86, 6.44) 

50 (4.55, 7.14) (4.71, 6.65) (4.88, 6.38) 

60 (4.65, 7.00) (4.78, 6.56) (4.93, 6.32) 

70 (4.71, 6.84) (4.82, 6.46) (4.97, 6.23) 

80 (4.75, 6.73) (4.87, 6.38) (5.00, 6.18) 

83  (4.88, 6.36)  

 84  (4.87, 6.37)  

85  (4.89, 6.32)  

90 (4.80, 6.65) (4.91, 6.33) (5.03, 6.14) 
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Number of 
observations 

95% CI 90% CI 80% CI 

100 (4.84, 6.60) (4.94, 6.29) (5.06, 6.12) 

115 (4.86, 6.50) (4.96, 6.23) (5.08, 6.07) 

125 (4.88, 6.45)  (4.99, 6.19) (5.10, 6.04) 

150 (4.94, 6.38) (5.03, 6.13) (5.14, 5.99) 

175 (4.98, 6.17) (5.06, 6.06) (5.16, 5.95) 

200 (5.02, 6.21) (5.09, 6.03) (5.18, 5.92) 

250 (5.06, 6.15) (5.14, 5.98) (5.22, 5.87) 

300 (5.10, 6.09) (5.16, 5.94) (5.24, 5.84) 

350 (5.13, 6.04) (5.19, 5.90) (5.26, 5.81) 

375 (5.13, 6.02) (5.19, 5.88) (5.27, 5.80) 

400 (5.15, 6.00) (5.21, 5.87) (5.28, 5.79) 

450 (5.18, 5.98) (5.22, 5.85) (5.29, 5.78) 

500 (5.19, 5.96) (5.24, 5.84) (5.30, 5.77) 

650 (5.23, 5.83) (5.27, 5.80) (5.33, 5.73) 

700 (5.24, 5.89) (5.28, 5.78) (5.34, 5.72) 

800 (5.25, 5.86) (5.29, 5.76) (5.35, 5.71) 

900 (5.27, 5.83) (5.31, 5.75) (5.36, 5.70) 

1000 (5.28, 5.82) (5.32, 5.74) (5.37, 5.69) 

1100 (5.29, 5.80) (5.33, 5.73) (5.37, 5.68) 

1200 (5.30, 5.79) (5.33, 5.72) (5.38, 5.68) 

1300 (5.31, 5.78) (5.34, 5.71) (5.38, 5.67) 

1400 (5.31, 5.77) (5.35, 5.70) (5.39, 5.66) 

1500 (5.32, 5.76) (5.35, 5.70) (5.39, 5.66) 

1600 (5.33, 5.76) (5.36, 5.69) (5.40, 5.65) 

1700 (5.34, 5.75) (5.37, 5.69) (5.40, 5.65) 
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TARGET Z = 5.00 TARGET DPMO = 0.28665 

Table 35  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper Limit 

15% margin Z  0.15Z = 4.25 Z + 0.15Z = 5.75 

10% margin Z  0.1Z = 4.5 Z + 0.1Z = 5.5 

5% margin Z  0.05Z = 4.75 Z + 0.05Z = 5.25 

 

Table 36  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

10 (3.38, 10.10) (3.57, 8.23) (3.85, 7.36) 

20 (3.74, 7.80) (3.93, 6.89) (4.16, 6.39) 

30 (3.94, 7.16) (4.10, 6.47) (4.28, 6.11) 

40 (4.07, 6.69) (4.20, 6.18) (4.35, 5.90) 

50 (4.15, 6.48) (4.27, 6.06) (4.41, 5.80) 

60 (4.20, 6.27) (4.32, 5.92) (4.45, 5.70) 

70 (4.26, 6.23) (4.37, 5.86) (4.50, 5.64) 

80 (4.29, 6.10) (4.40, 5.78) (4.53, 5.59) 

87  (4.43, 5.75)  

90 (4.31, 6.05) (4.43, 5.74) (4.55, 5.56) 

100 (4.35, 5.96) (4.44, 5.68) (4.57, 5.53) 

115 (4.40, 5.91) (4.49, 5.64) (4.60, 5.50) 

125 (4.40, 5.84) (4.50, 5.60) (4.61, 5.46) 

150 (4.47, 5.76) (4.55, 5.55) (4.65, 5.43) 

170 (4.50, 5.70) (4.57, 5.51) (4.66, 5.39) 

175 (4.50, 5.70) (4.58, 5.49) (4.67, 5.39) 

200 (4.54, 5.65) (4.60, 5.48) (4.69, 5.37) 
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Number of 
observations 

95% CI 90% CI 80% CI 

250 (4.58, 5.57) (4.64, 5.41) (4.73, 5.32) 

300 (4.61, 5.52) (4.67, 5.38) (4.74, 5.29) 

350 (4.64, 5.47) (4.70, 5.34) (4.76, 5.26) 

400 (4.66, 5.45) (4.71, 5.32) (4.77, 5.25) 

450 (4.68, 5.42) (4.73, 5.30) (4.79, 5.23) 

500 (4.69, 5.39) (4.74, 5.29) (4.80, 5.23) 

600 (4.73, 5.35) (4.77, 5.26) (4.82, 5.20) 

625 (4.73, 5.36) (4.77, 5.25) (4.82, 5.20) 

700 (4.74, 5.32) (4.78, 5.23) (4.83, 5.18) 

800 (4.76, 5.31) (4.80, 5.23) (4.85, 5.17) 

900 (4.77, 5.28)  (4.81, 5.21) (4.85, 5.16) 

1000 (4.78, 5.27) (4.82, 5.20) (4.86, 5.16) 

1100 (4.79, 5.26) (4.82, 5.19) (4.86, 5.15) 

1200 (4.80, 5.25) (4.83, 5.18) (4.87, 5.14) 

1300 (4.81, 5.24) (4.83, 5.17) (4.87, 5.13) 

1400 (4.82, 5.22) (4.84, 5.16) (4.88, 5.13) 

1500 (4.83, 5.22) (4.85, 5.17) (4.88, 5.13) 

1600 (4.82, 5.22) (4.85, 5.16) (4.88, 5.13) 

1700 (4.83, 5.21) (4.86, 5.16) (4.89, 5.12) 
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TARGET Z = 4.52 TARGET DPMO = 3.09198 

Table 37  Reference intervals used to select the minimum number of observations for each level 

of precision. 

Precision Lower limit Upper limit 

15% margin Z  0.15Z = 3.842 Z + 0.15Z = 5.198 

10% margin Z  0.1Z = 4.07 Z + 0.1Z = 4.97 

5% margin Z  0.05Z = 4.29 Z + 0.05Z = 4.75 

 

Table 38  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

10 (3.03, 9.22) (3.22, 7.50) (3.49, 6.72) 

20 (3.36, 7.07) (3.51, 6.20) (3.72, 5.78) 

30 (3.54, 6.45) (3.69, 5.83) (3.86, 5.52) 

40 (3.64, 6.08) (3.78, 5.59) (3.94, 5.34) 

50 (3.75, 5.87) (3.85, 5.46) (3.99, 5.23) 

60 (3.80, 5.76) (3.91, 5.37) (4.04, 5.17) 

70 (3.84, 5.61) (3.94, 5.28) (4.07, 5.10) 

80 (3.88, 5.53) (3.98, 5.24) (4.09, 5.07) 

90 (3.91, 5.47) (4.00, 5.20) (4.12, 5.04) 

92  (4.00, 5.19)  

100 (3.93, 5.40) (4.02, 5.15) (4.13, 5.01) 

115 (3.96, 5.34) (4.05, 5.10) (4.16, 4.96) 

150 (4.04, 5.23) (4.11, 5.03) (4.20, 4.91) 

175 (4.07, 5.16) (4.14, 4.97) (4.22, 4.87) 

200 (4.10, 5.12) (4.16, 4.95) (4.24, 4.85) 

250 (4.14, 5.03) (4.20, 4.90) (4.27, 4.82) 

300 (4.17, 4.99) (4.22, 4.86) (4.29, 4.79) 
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Number of 
observations 

95% CI 90% CI 80% CI 

350 (4.20, 4.96) (4.25, 4.83) (4.30, 4.76) 

400 (4.21, 4.93) (4.26, 4.81) (4.32, 4.75) 

450 (4.23, 4.90) (4.27, 4.79) (4.32, 4.73) 

500 (4.24, 4.88) (4.29, 4.78) (4.34, 4.72) 

600 (4.27, 4.84) (4.31, 4.76) (4.35, 4.71) 

700 (4.29, 4.82) (4.32, 4.74) (4.36, 4.69) 

800 (4.29, 4.80) (4.33, 4.72) (4.37, 4.68) 

900 (4.31, 4.78) (4.34, 4.71) (4.38, 4.67) 

1000 (4.32, 4.76) (4.35, 4.70) (4.39, 4.66) 

1100 (4.33, 4.75) (4.36, 4.68) (4.39, 4.65) 

1200 (4.34, 4.74) (4.37, 4.68) (4.40, 4.65) 

1300 (4.34, 4.74) (4.37, 4.68) (4.40, 4.64) 

1400 (4.35, 4.74) (4.38, 4.67) (4.41, 4.64) 

1500 (4.36, 4.72) (4.38, 4.67) (4.41, 4.63) 

1600 (4.36, 4.72) (4.39, 4.66) (4.42, 4.63) 

1700 (4.36, 4.71) (4.39, 4.66) (4.42, 4.63) 

 

TARGET Z = 4.01 TARGET DPMO = 30.36 

Table 39  Reference intervals used to select the minimum number of observations for each level 

of precision. 

Precision Lower limit Upper Limit 

15% margin Z  0.15Z = 3.4085 Z + 0.15Z = 4.6115 

10% margin Z  0.1Z = 3.61 Z + 0.1Z = 4.41 

5% margin Z  0.05Z = 3.81 Z + 0.05Z = 4.21 
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Table 40  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

5 (2.12, 12.84) (2.32, 9.13) (2.61, 7.35) 

10 (2.57, 7.96) (2.75, 6.50) (2.97, 5.79) 

15 (2.79, 6.75) (2.95, 5.82) (3.13, 5.32) 

20 (2.92, 6.21) (3.06, 5.46) (3.23, 5.08) 

25 (2.99, 5.85) (3.12, 5.24) (3.29, 4.91) 

30 (3.09, 5.63) (3.20, 5.08) (3.35, 4.83) 

35 (3.13, 5.50) (3.26, 5.04) (3.40, 4.76) 

40 (3.17, 5.38) (3.29, 4.95) (3.44, 4.71) 

45 (3.22, 5.25) (3.33, 4.86) (3.47, 4.65) 

50 (3.27, 5.15) (3.36, 4.82) (3.49, 4.62) 

60 (3.32, 5.09) (3.42, 4.76) (3.53, 4.56) 

70 (3.35, 4.98) (3.44, 4.68) (3.56, 4.52) 

80 (3.41, 4.88) (3.50, 4.63) (3.60, 4.48) 

83  (3.50, 4.61)  

85  (3.50, 4.60)  

90 (3.44, 4.82) (3.52, 4.58) (3.62, 4.44) 

100 (3.47, 4.76) (3.55, 4.55) (3.64, 4.43) 

110 (3.48, 4.76) (3.56, 4.51) (3.65, 4.40) 

115 (3.48, 4.73) (3.56, 4.52) (3.66, 4.39) 

150 (3.55, 4.63) (3.62, 4.44) (3.70, 4.33) 

175 (3.58, 4.57) (3.65, 4.41) (3.72, 4.32) 

200 (3.61, 4.53) (3.67, 4.38) (3.74, 4.29) 

250 (3.65, 4.47) (3.70, 4.33) (3.77, 4.26) 

300 (3.68, 4.43) (3.73, 4.31) (3.79, 4.24) 



 

CAPABILITY ANALYSIS 35 

Number of 
observations 

95% CI 90% CI 80% CI 

350 (3.70, 4.40) (3.74, 4.28) (3.80, 4.22) 

400 (3.72, 4.36) (3.76, 4.27) (3.81, 4.20) 

450 (3.74, 4.35) (3.78, 4.25) (3.82, 4.19) 

500 (3.75, 4.33) (3.79, 4.24) (3.84, 4.18) 

650 (3.78, 4.28) (3.81, 4.21) (3.86, 4.16) 

675 (3.79, 4.27) (3.82, 4.20) (3.86, 4.16) 

700 (3.78, 4.28) (3.82, 4.20) (3.86, 4.16) 

900 (3.81, 4.25) (3.84, 4.18) (3.88, 4.14) 

1000 (3.82, 4.23) (3.85, 4.16) (3.88, 4.13) 

1100 (3.83, 4.22) (3.86, 4.16) (3.89, 4.12) 

1200 (3.84, 4.21) (3.87, 4.15) (3.89, 4.12) 

1300 (3.84, 4.20) (3.87, 4.15) (3.90. 4.12) 

1400 (3.85, 4.19) (3.88, 4.14) (3.90, 4.11) 

1500 (3.86, 4.18) (3.88, 4.14) (3.91, 4.11) 

1600 (3.86, 4.18) (3.88, 4.13) (3.91, 4.10) 

1700 (3.86, 4.18) (3.89, 4.13) (3.91, 4.10) 

 

TARGET Z = 3.51 TARGET DPMO = 224.1 

Table 41  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper Limit 

15% margin Z  0.15Z =2.9835 Z + 0.15 Z = 4.0365 

10% margin Z  0.1Z = 3.16 Z + 0.1Z = 3.86 

5% margin Z  0.05Z = 3.33 Z + 0.05Z = 3.69 
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Table 42  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

10 (2.27, 7.08) (2.43, 5.80) (2.63, 5.17) 

20 (2.57, 5.56) (2.68, 4.88) (2.85, 5.52) 

30 (2.71, 5.05) (2.83, 4.54) (2.96, 4.28) 

40 (2.80, 4.73) (2.90, 4.37) (3.02, 4.16) 

50 (2.86, 4.57) (2.97, 4.25) (3.08, 4.07) 

60 (2.92, 4.44) (3.00, 4.18)  (3.10, 4.03) 

70 (2.95, 4.37) (3.03, 4.13) (3.12, 3.98) 

80 (2.97, 4.33) (3.06, 4.08) (3.15, 3.94) 

90 (3.01, 4.26) (3.08, 4.04) (3.17, 3.90) 

100 (3.03, 4.22) (3.11, 4.02) (3.19, 3.89) 

110 (3.05, 4.16) (3.11, 3.98) (3.20, 3.86) 

150 (3.12, 4.06) (3.17, 3.91) (3.24, 3.81) 

175 (3.14, 4.02) (3.19, 3.87) (3.27, 3.79) 

185 (3.14, 4.00) (3.20, 3.86) (3.26, 3.78) 

200 (3.17, 3.97) (3.22, 3.84) (3.28, 3.77) 

250 (3.20, 3.92) (3.24, 3.80) (3.30, 3.74) 

300 (3.22, 3.88) (3.26, 3.78) (3.31, 3.72) 

350 (3.24, 3.86) (3.29, 3.76) (3.33, 3.71) 

400 (3.25, 3.83) (3.30, 3.75) (3.34, 3.69) 

450 (3.27, 3.81) (3.31, 3.72) (3.35, 3.67) 

500 (3.28, 3.79) (3.31, 3.71) (3.36, 3.67) 

600 (3.30, 3.77) (3.33, 3.70) (3.37, 3.65) 

650 (3.31, 3.76) (3.34, 3.69) (3.37, 3.65) 

700 (3.31, 3.74) (3.34, 3.68) (3.38, 3.64) 
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Number of 
observations 

95% CI 90% CI 80% CI 

800 (3.33, 3.74) (3.35, 3.67) (3.38, 3.63) 

900 (3.33, 3.71) (3.36, 3.66) (3.39, 3.62) 

1000 (3.34, 3.71) (3.37, 3.65) (3.40, 3.61) 

1100 (3.35, 3.69) (3.38, 3.64) (3.40, 3.61) 

1200 (3.36, 3.69) (3.38, 3.64) (3.41, 3.61) 

1300 (3.36, 3.69) (3.39, 3.63) (3.41, 3.60) 

1400 (3.37, 3.67) (3.39, 3.63) (3.42, 3.60) 

1500 (3.38, 3.67) (3.40, 3.62) (3.42, 3.60) 

1600 (3.38, 3.66) (3.40, 3.62) (3.42, 3.59) 

1700 (3.38, 3.66) (3.40, 3.61) (3.42, 3.59) 

 

TARGET Z = 3.02 TARGET DPMO = 1263.9 

Table 43  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper limit 

15% margin Z  0.15Z = 2.567 Z + 0.15Z = 3.473 

10% margin Z  0.1Z = 2.72 Z + 0.1Z = 3.32 

5% margin Z  0.05Z = 2.87 Z + 0.05Z = 3.17 

 

Table 44  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

10 (1.92, 6.26) (2.07, 5.02) (2.26, 4.49) 

20 (2.22, 4.83) (2.33, 4.23) (2.46, 3.91) 

30 (2.32, 4.34) (2.42, 3.92) (2.54, 3.70) 

40 (2.40. 4.11) (2.48, 3.77) (2.60, 3.58) 
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Number of 
observations 

95% CI 90% CI 80% CI 

50 (2.45, 3.96) (2.55, 3.68) (2.64, 3.52) 

60 (2.50, 3.87) (2.58, 3.62) (2.68, 3.48) 

70 (2.54, 3.79) (2.61, 3.55) (2.70, 3.43) 

80 (2.56, 3.73) (2.63, 3.52) (2.71, 3.40) 

90 (2.59, 3.68) (2.65, 3.49) (2.73, 3.38) 

94  (2.66, 3.47)  

100 (2.61, 3.65) (2.67, 3.46) (2.74, 3.36) 

110 (2.62, 3.61) (2.69, 3.44) (2.76, 3.34) 

120 (2.64, 3.58) (2.70, 3.42) (2.76, 3.32) 

150 (2.68, 3.52) (2.73, 3.37) (2.79, 3.29) 

200 (2.72, 3.44) (2.76, 3.32) (2.81, 3.25) 

250 (2.75, 3.38) (2.79, 3.28) (2.84, 3.23) 

300 (2.77, 3.36) (2.81, 3.26) (2.86, 3.20) 

350 (2.78, 3.32) (2.82, 3.24) (2.87, 3.19) 

400 (2.80, 3.30) (2.83, 3.22) (2.87, 3.18) 

425 (2.81, 3.29) (2.84, 3.22) (2.88, 3.17) 

450 (2.81, 3.28) (2.85, 3.21) (2.88, 3.17) 

500 (2.82, 3.28) (2.85, 3.20) (2.88, 3.16) 

600 (2.84, 3.25) (2.87, 3.19) (2.90, 3.15) 

650 (2.84, 3.24) (2.87, 3.18) (2.90, 3.14) 

700 (2.85, 3.23) (2.88, 3.17) (2.91, 3.14) 

800 (2.86, 3.22) (2.88, 3.16) (2.91, 3.13) 

900 (2.87, 3.21) (2.89, 3.16) (2.92, 3.12) 

1000 (2.88, 3.20) (2.90. 3.15) (2.93, 3.12) 

1100 (2.88, 3.18) (2.91, 3.14) (2.93, 3.11) 
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Number of 
observations 

95% CI 90% CI 80% CI 

1200 (2.89, 3.18) (2.91, 3.14) (2.93, 3.11) 

1300 (2.89, 3.17) (2.91, 3.13) (2.94, 3.10) 

1400 (2.90, 3.16) (2.92, 3.12) (2.94, 3.10) 

1500 (2.90, 3.16) (2.92, 3.12) (2.94, 3.10) 

1600 (2.91, 3.15) (2.92, 3.12) (2.94, 3.10) 

1700 (2.91, 3.15) (2.93, 3.12) (2.95, 3.09) 

 

TARGET Z = 2.50 TARGET DPMO = 6209.7 

Table 45  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper limit 

15% margin Z  0.15Z = 2.125 Z + 0.15Z = 2.875 

10% margin Z  0.1Z = 2.25 Z + 0.1Z = 2.75 

5% margin Z  0.05Z = 2.38 Z + 0.05Z = 2.63 

 

Table 46  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

10 (1.51, 5.09) (1.63, 4.13) (1.78, 3.69)  

20 (1.76, 4.05) (1.86, 3.51) (1.98, 3.25) 

30 (1.87, 3.57) (1.97, 3.27)  (2.07, 3.07) 

40 (1.94, 3.40) (2.01, 3.14) (2.11, 2.98) 

50 (1.99, 3.32) (2.07, 3.07) (2.16, 2.93) 

60 (2.04, 3.22) (2.10, 3.00) (2.18, 2.88) 

70 (2.08, 3.14) (2.13, 2.96) (2.21, 2.85) 

80 (2.10, 3.10) (2.16, 2.93) (2.23, 2.82) 
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Number of 
observations 

95% CI 90% CI 80% CI 

90 (2.11, 3.07) (2.16, 2.91) (2.24, 2.82) 

100 (2.13, 3.02) (2.18, 2.88) (2.25, 2.79) 

102  (2.19, 2.88)  

103  (2.19, 2.87)  

105  (2.19, 2.86)  

120 (2.16, 2.98) (2.21, 2.83) (2.27, 2.76) 

125 (2.17, 2.97) (2.21, 2.84) (2.27, 2.76) 

130 (2.18, 2.96) (2.22, 2.83) (2.28, 2.75) 

135 (2.18, 2.94) (2.23, 2.81) (2.29, 2.74) 

150 (2.19, 2.94) (2.24, 2.81) (2.29, 2.73) 

200 (2.23, 2.87) (2.27, 2.77) (2.32, 2.71) 

215 (2.24, 2.85) (2.28, 2.75) (2.33, 2.69) 

225 (2.25, 2.83) (2.29, 2.74) (2.33, 2.69) 

250 (2.26, 2.82) (2.29, 2.73) (2.33, 2.68) 

300 (2.28, 2.79) (2.31, 2.72) (2.35, 2.67) 

350 (2.30, 2.77) (2.33, 2.69) (2.37, 2.65) 

400 (2.31, 2.75) (2.34, 2.68) (2.37, 2.64) 

450 (2.32, 2.73) (2.35, 2.67) (2.38, 2.63) 

500 (2.33, 2.72) (2.35, 2.66) (2.38, 2.63) 

600 (2.34, 2.71) (2.37, 2.65) (2.40, 2.61)  

700 (2.36, 2.69) (2.38, 2.64) (2.40, 2.61) 

750 (2.36, 2.68) (2.38, 2.63) (2.41, 2.60) 

800 (2.36, 2.67) (2.39, 2.63) (2.41, 2.60) 

900 (2.37, 2.66) (3.39, 2.62) (2.42, 2.59) 

1000 (2.38, 2.65) (2.40, 2.61) (2.42, 2.59) 
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Number of 
observations 

95% CI 90% CI 80% CI 

1100 (2.38, 2.65) (2.40, 2.61) (2.42, 2.58) 

1200 (2.39, 2.64) (2.41, 2.60) (2.43, 2.58) 

1300 (2.39, 2.64) (2.41, 2.60) (2.43, 2.58) 

1400 (2.39, 2.63) (2.41, 2.60) (2.43, 2.57) 

1500 (2.40, 2.63) (2.41, 2.59) (2.43, 2.57) 

1600 (2.40, 2.62) (2.42, 2.59) (2.44, 2.57) 

1700 (2.40, 2.62) (2.42, 2.59) (2.44, 2.57) 

 

TARGET Z = 2.01 TARGET DPMO = 22215.6 

Table 47  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper Limit 

15% margin Z  0.15Z = 1.7085 Z + 0.15Z = 2.3115 

10% margin Z  0.1Z = 1.81 Z + 0.1Z = 2.21 

5% margin Z  0.05Z = 1.91 Z + 0.05Z = 2.11 

 

Table 48  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

5 (0.87, 6.72) (0.99, 4.65) (1.16, 3.78) 

10 (1.15, 4.20) (1.25, 3.39) (1.38, 2.96) 

15 (1.29, 3.53) (1.38, 3.02) (1.50, 2.73) 

20 (1.36, 3.23) (1.45, 2.80) (1.55, 2.59) 

25 (1.43, 3.05) (1.50, 2.72) (1.59, 2.53) 

30 (1.46, 2.95) (1.54, 2.65) (1.63, 2.49) 

35 (1.49, 2.85) (1.57, 2.59) (1.65, 2.45) 



 

CAPABILITY ANALYSIS 42 

Number of 
observations 

95% CI 90% CI 80% CI 

40 (1.53, 2.80) (1.59, 2.54) (1.68, 2.42) 

45 (1.55, 2.72) (1.61, 2.50) (1.69, 2.38) 

50 (1.58, 2.68) (1.64, 2.48) (1.71, 2.36) 

60 (1.61, 2.61) (1.66, 2.44) (1.72, 2.33) 

70 (1.63, 2.55) (1.69, 2.40) (1.75, 2.30) 

80 (1.66, 2.52) (1.71, 2.37) (1.77, 2.29) 

90 (1.68, 2.49) (1.72, 2.35) (1.78, 2.27) 

100 (1.69, 2.46) (1.74, 2.33) (1.79, 2.26) 

115  (1.75, 2.31)  

120  (1.76, 2.30)  

150 (1.75, 2.37) (1.79, 2.27) (1.83, 2.21) 

200 (1.78, 2.32) (1.81, 2.23) (1.85, 2.18) 

225 (1.79, 2.30) (1.82, 2.22) (1.87, 2.17) 

250 (1.80, 2.29) (1.83, 2.21) (1.87, 2.16) 

300 (1.82, 2.26) (1.85, 2.18) (1.88, 2.14) 

350 (1.83, 2.24) (1.86, 2.18) (1.89, 2.14) 

400 (1.84, 2.23) (1.87, 2.17) (1.90, 2.13) 

450 (1.86, 2.21) (1.88, 2.15) (1.91, 2.12) 

500 (1.86, 2.20) (1.88,2.15) (1.91, 2.12) 

700 (1.88, 2.17) (1.90, 2.13) (1.93, 2.10) 

800 (1.89, 2.16) (1.91, 2.12) (1.93, 2.09) 

850 (1.90, 2.15) (1.91, 2.12) (1.93, 2.09) 

900 (1.90, 2.15) (1.92, 2.11) (1.94, 2.09) 

1000 (1.90, 2.15) (1.92, 2.11) (1.94, 2.09) 

1100 (1.91, 2.13) (1.93, 2.10) (1.95, 2.08) 
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Number of 
observations 

95% CI 90% CI 80% CI 

1200 (1.92, 2.13) (1.93, 2.10) (1.95, 2.08) 

1300 (1.92, 2.13) (1.93, 2.09) (1.95, 2.08) 

1400 (1.92, 2.12) (1.94, 2.09) (1.95, 2.07) 

1500 (1.93, 2.12) (1.94, 2.09) (1.95, 2.07) 

1600 (1.93, 2.11) (1.94, 2.09) (1.96, 2.07) 

1700 (1.93, 2.11) (1.94, 2.09) (1.96, 2.07) 

 

TARGET Z = 1.50 TARGET DPMO = 66807.2 

Table 49  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper Limit 

15% margin Z  0.15Z = 1.2750 Z + 0.15Z = 1.7250 

10% margin Z  0.1Z = 1.35 Z + 0.1Z = 1.65 

5% margin Z  0.05Z = 1.43 Z + 0.05Z = 1.58 

 

Table 50  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

10 (0.76, 3.27) (0.85, 2.55) (0.96, 2.27) 

20 (0.94, 2.53) (1.03, 2.18) (1.11, 2.00) 

30 (1.04, 2.26) (1.10, 2.02) (1.18, 1.89) 

40 (1.09, 2.13) (1.15, 1.94) (1.22, 1.83) 

50 (1.13, 2.06) (1.19, 1.89) (1.25, 1.79) 

60 (1.16, 2.00) (1.21, 1.84) (1.27, 1.79) 

70 (1.19, 1.96) (1.23, 1.82) (1.29, 1.75) 

80 (1.20, 1.92) (1.25, 1.80) (1.30, 1.72) 
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Number of 
observations 

95% CI 90% CI 80% CI 

90 (1.23, 1.91) (1.26, 1.79) (1.31, 1.72) 

100 (1.24, 1.88) (1.27, 1.76) (1.32, 1.70) 

130  (1.30, 1.73)  

132  (1.30, 1.73)  

135  (1.30, 1.72)  

140  (1.31, 1.72)  

145  (1.31, 1.72)  

150 (1.28, 1.80) (1.31, 1.72) (1.35, 1.67) 

175 (1.29, 1.78) (1.32, 1.70) (1.36, 1.66) 

185 (1.30, 1.77) (1.33, 1.70) (1.37, 1.65) 

200 (1.30, 1.76) (1.33, 1.68) (1.37, 1.64) 

250 (1.33, 1.72) (1.36, 1.66) (1.39, 1.63) 

275 (1.33, 1.72) (1.36, 1.66) (1.39, 1.62) 

300 (1.35, 1.70) (1.37, 1.65) (1.40, 1.61) 

350 (1.36, 1.70) (1.38, 1.64) (1.40, 1.61) 

400 (1.36, 1.67) (1.38, 1.63) (1.41, 1.60) 

450 (1.37, 1.67) (1.39, 1.62) (1.41, 1.59) 

500 (1.38, 1.66) (1.40, 1.62) (1.42, 1.59) 

600 (1.39, 1.65) (1.40, 1.61) (1.42, 1.58) 

700 (1.40, 1.64) (1.41, 1.60) (1.43, 1.58) 

800 (1.40, 1.63) (1.42, 1.59) (1.44, 1.57) 

900 (1.41, 1.62) (1.42, 1.59) (1.44, 1.57) 

1000 (1.41, 1.61) (1.43, 1.58) (1.44, 1.56) 

1100 (1.41, 1.61) (1.43, 1.58) (1.44, 1.56) 

1200 (1.42, 1.60) (1.43, 1.57) (1.45, 1.56) 
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Number of 
observations 

95% CI 90% CI 80% CI 

1300 (1.42, 1.60) (1.43, 1.57) (1.45, 1.56) 

1400 (1.43, 1.59) (1.44, 1.57) (1.45, 1.55) 

1500 (1.43, 1.59) (1.44, 1.57) (1.45, 1.55) 

1600 (1.43, 1.59) (1.44, 1.57) (1.46, 1.55) 

1700 (1.43, 1.59) (1.44, 1.56) (1.46, 1.55) 

 

TARGET Z = 1.01 TARGET DPMO = 156247.6 

Table 51  Reference intervals used to select the minimum number of observations for each level 

of precision 

Precision Lower limit Upper Limit 

15% margin Z  0.15Z = 0.8585 Z + 0.15Z = 1.1615 

10% margin Z  0.1Z =0.91 Z + 0.1Z = 1.11 

5% margin Z  0.05Z = 0.96 Z + 0.05Z = 1.06 

 

Table 52  Simulated confidence intervals of the benchmark Z for various numbers of 

observations 

Number of 
observations 

95% CI 90% CI 80% CI 

10 (0.38, 2.33) (0.46, 1.86) (0.55, 1.62) 

20 (0.55, 1.83) (0.62, 1.55) (0.68, 1.41) 

30 (0.62, 1.63) (0.67, 1.44) (0.74, 1.32) 

40 (0.67, 1.54) (0.72, 1.37) (0.77, 1.28) 

50 (0.70, 1.45) (0.75, 1.32) (0.80, 1.24) 

60 (0.73, 1.42) (0.77, 1.29) (0.82, 1.22) 

70 (0.75, 1.38) (0.78, 1.27) (0.83, 1.21) 

80 (0.76, 1.35) (0.80, 1.25) (0.84, 1.19) 

90 (0.78, 1.32) (0.81, 1.23) (0.85, 1.18) 
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Number of 
observations 

95% CI 90% CI 80% CI 

100 (0.78, 1.31) (0.81, 1.22) (0.85, 1.17) 

150 (0.82, 1.25) (0.84, 1.18) (0.88, 1.14) 

185  (0.86, 1.16)  

187  (0.87, 1.16)  

190  (0.87, 1.16)  

200 (0.85, 1.21) (0.87, 1.15) (0.90, 1.12) 

250 (0.86, 1.19) (0.88, 1.14) (0.91, 1.11) 

300 (0.87, 1.18) (0.89, 1.13) (0.92, 1.10) 

350 (0.88, 1.16) (0.90, 1.12) (0.92, 1.09) 

400 (0.89, 1.14) (0.91, 1.11) (0.93, 1.08) 

450 (0.89, 1.14) (0.91, 1.11) (0.93, 1.08) 

500 (0.90, 1.13) (0.92, 1.10) (0.94, 1.08) 

600 (0.91, 1.12) (0.93, 1.09) (0.94, 1.07) 

700 (0.92, 1.11) (0.93, 1.08) (0.95, 1.07) 

800 (0.93, 1.11) (0.94, 1.08) (0.95, 1.06) 

900 (0.93, 1.10) (0.94, 1.07) (0.95, 1.06) 

1000 (0.93, 1.09) (0.94, 1.07) (0.96, 1.06) 

1100 (0.94, 1.09) (0.95, 1.07) (0.96, 1.05) 

1200 (0.94, 1.09) (0.95, 1.06) (0.96, 1.05) 

1300 (0.94, 1.08) (0.95, 1.06) (0.96, 1.05) 

1400 (0.94, 1.08) (0.95, 1.06) (0.97, 1.05) 

1500 (0.95, 1.08) (0.95, 1.06) (0.97, 1.05) 

1600 (0.95, 1.08) (0.96, 1.06) (0.97, 1.05) 

1700 (0.95, 1.07) (0.96, 1.06) (0.97, 1.04) 
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