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ABSTRACT 

We propose an alternative procedure to correct a subtle misstep in Bonett’s (2006) confidence 

interval (CI) for the ratio of two standard deviations. The pooled kurtosis estimator for Layard’s 

(1973) test statistic, on which Bonett's interval is based, is consistent only when the population 

variances are equal. We derive an alternative estimator that is consistent when the population 

variances are equal and when they are unequal and use the new estimator to calculate the 

correct CI. Simulation studies reveal that the new CI is, in general, more accurate and more 

precise than the CI based on the Levene/Browne-Forsythe test 𝑊50 and Pan’s (1999) test 𝐿50. 

Consistent with Pan, we observe that CIs based on test 𝑊50 display a loss of precision with small 

samples, often resulting in intervals that have infinite width. CIs that are based on test 𝐿50 

perform well with symmetric and nearly symmetric distributions, but perform poorly when the 

populations are skewed. 

Index terms: homogeneity of variances, Levene’s test, Brown-Forsythe test, Layard’s test, confidence 

interval (CI) for the ratio of variances 

1. Introduction 
It is widely known that the classical F test, and associated confidence intervals (CIs) are extremely 

sensitive to departures from normality—so sensitive, in fact, that the classical F test is not 

appropriate for most practical applications. For this reason, many have proposed more robust 

alternatives. Among these, the test known as “Test W50” is often preferred because it has very 

good type I error properties, yet is simple to calculate, and is simple to interpret. (For 

comparative analyses, see Conover et al. (1981), Balakrishnan and Ma (1990), and Lim and Loh 

(1996).) Test 𝑊50 is based on a procedure that was originally proposed by Levene (1960) and 

later enhanced by Brown and Forsythe (1974). Test 𝑊50 has been widely adopted and is available 
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in most well-known statistical software packages, such as Minitab Statistical Software, SAS, R, 

and JMP.  

The type II error properties of test 𝑊50 are somewhat less remarkable than its type I error 

properties. Pan (1999) shows that, for some distributions, including the normal distribution, the 

power of test 𝑊50 in two-sample problems has an upper bound that is possibly far below 1. And 

this upper bound is not affected by the magnitude of the difference between the population 

variances. This deficiency naturally extends to CIs that are based on test 𝑊50. Pan shows that 

there is a non-negligible probability that a CI for the ratio of the population variances that is 

based on test 𝑊50 will be infinite (0, +∞), and thus uninformative. Pan’s observation is 

consistent with the results of our own simulations, which we report later in this paper. 

Pan proposes an alternative procedure, called 𝐿50, to correct the limitations of the 𝑊50 

procedure. Based on simulation results, Pan concludes that test 𝐿50 is more powerful than test 

𝑊50, yet is equally robust and shares its desired asymptotic properties. The samples for Pan’s 

simulations, however, were drawn from symmetric or mildly skewed distributions with heavy to 

light tails. The potential impact of skewness on the performance of the 𝐿50 test in small samples 

was not specifically discussed. 

Pan also argues that the 𝐿50 procedure is as powerful as other, notably robust procedures such 

as the modified Fligner-Killeen rank test and the Hall-Padmanabhan adaptive test. Practically, 

however, the modified Fligner-Killeen rank test and the Hall-Padmanabhan adaptive test are 

somewhat less useful than tests 𝐿50 and 𝑊50 because they are computationally laborious and 

intensive.  

Recently, Bonett (2006) proposed an alternative CI procedure that is based on the two-sample 

version of Layard’s (1973) test of the homogeneity of variances. Bonett includes several 

adjustments to improve the small-sample performance of Layard’s procedure. For example, 

Bonett proposes a pooled kurtosis estimator that is asymptotically equivalent to Layard’s, but 

which displays less small-sample bias.  

Unfortunately, neither Layard’s original pooled kurtosis estimator, nor Bonett’s proposed 

replacement are consistent when population variances are not equal. Thus, the intervals that 

Bonett (2006) proposes are not proper CIs, but are better described as acceptance intervals for 

the test of the equality of variances. Thus, subtracting the simulated coverage probabilities 

reported in Bonett (2006) from unity yields the type I error rates for the test of the equality of 

variances. Comparing these type I error rates to those of Layard’s original test confirms that 

Bonett’s adjustments successfully enhance the small-sample performance of Layard’s test. The CI 

for the ratio of the variances proposed by Bonett, however, must be revisited. 

Note also that Bonett compares the proposed intervals to CIs based on Shoemaker’s (2003) 

approximate F test. However, the CI for the variance ratio associated with Shoemaker’s test—as 

briefly described on page 106 of Shoemaker’s article—is also based on Layard’s pooled kurtosis 

estimator. Therefore, the CIs calculated in section 7 of Shoemaker’s paper are also best 

described as acceptance intervals for the test of the equality of variances. Despite these errors, 

one can conclude from Bonett’s simulation results that his adjustment improved the small-
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sample performance of Layard’s test of the equality of variances and that the resulting test for 

the equality of variances performs better than does Shoemaker’s test. 

In the present paper, we correct the misstep in Bonett (2006) by extending the two-sample form 

of Layard’s test to test null hypotheses about the ratio of the variances or standard deviations. 

To accomplish this, we propose a pooled kurtosis estimator that is consistent for any given 

hypothesized ratio. We then invert the test statistic to obtain the CI for the ratio. Finally, we 

conduct simulation studies to assess the robustness properties of the new CI in small-sample 

designs. Moreover, we compare the small-sample performance of the new CI to the 

performance of CIs associated with the classical F test, test 𝑊50, and test 𝐿50. 

2. Layard Test and Some Extension 
Let 𝑌𝑖1, … , 𝑌𝑖𝑛𝑖 , … , 𝑌𝑘1, … , 𝑌𝑘𝑛𝑘be 𝑘 independent samples, each sample being independent and 

identically distributed with mean 𝐸(𝑌𝑖𝑗) = 𝜇𝑖 and variance Var(𝑌𝑖𝑗) = 𝜎𝑖
2 > 0. In addition, 

suppose that the samples originate from populations with a common kurtosis 𝛾 =

𝐸(𝑌 − 𝜇)4 𝜎4⁄ < ∞. We note that Layard uses the kurtosis excess 𝛾𝑒 = 𝛾 − 3. 

Let 𝑌̅𝑖 and 𝑆𝑖 be the mean and standard deviation of sample 𝑖, respectively. Also, let  𝜏2 = 2 +

(1 − 1 𝑛̅⁄ )𝛾𝑒 = 2 + (1 − 1 𝑛̅⁄ )(𝛾 − 3), where 𝑛̅ = ∑𝑛𝑖/𝑘. As indicated in Layard (1973), for large 

samples, 𝜏2 ≅ Var((𝑛𝑖 − 1)
1/2 ln 𝑆𝑖

2). 

To test the null hypothesis of equality of variances, Layard performs an orthogonal 

transformation on the vector whose components 𝑍𝑖 = (𝑛𝑖 − 1)
1/2 ln 𝑆𝑖

2 /𝜏 are asymptotically 

distributed as the standard normal distribution under the null hypothesis. Then he uses the 

distance preservation property of orthogonal transformations to show that the test statistic 𝑆′ 

(given below) is asymptotically distributed as a chi-square distribution with 𝑘 − 1 degrees of 

freedom under the null hypothesis of equality of variances:  

𝑆′ =∑(𝑛𝑖 − 1)(ln 𝑆𝑖
2 −

∑ (𝑛𝑖 − 1) ln 𝑆𝑖
2𝑘

𝑖=1

∑ (𝑛𝑖 − 1)
𝑘
𝑖=1

)

2𝑘

𝑖=1

/𝜏2 

In general, 𝑍𝑖 = (𝑛𝑖 − 1)
1

2(ln 𝑆𝑖
2 − ln𝜎𝑖

2)/𝜏 is asymptotically distributed as the standard normal 

distribution. Therefore, one can apply Layard’s techniques to derive the more generalized test 

statistic 𝑇𝑘
′ : 

𝑇𝑘
′ =∑(𝑛𝑖 − 1)

(ln 𝑆𝑖
2 − ln𝜎𝑖

2)
2

𝜏2

𝑘

𝑖=1

−

(

 ∑(𝑛𝑖 − 1)

𝑘

𝑖=1

ln 𝑆𝑖
2 − ln𝜎𝑖

2

𝜏√∑ (𝑛𝑖 − 1)
𝑘
𝑖=1 )

 

2

 

𝑇𝑘
′ is asymptotically distributed as a chi-square distribution with 𝑘 − 1 degrees of freedom under 

both the null hypothesis and the alternative hypothesis.  
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One can express 𝑇𝑘
′ in a form that is more similar to that of 𝑆′. Expressing the squared term as a 

double sum and performing some algebra yields the following: 

𝑇𝑘
′ =∑(𝑛𝑖 − 1)(ln 𝑆𝑖

2 − ln𝜎𝑖
2 −

∑ (𝑛𝑖 − 1) (ln 𝑆𝑖
2 − ln𝜎𝑖

2)𝑘
𝑖=1

∑ (𝑛𝑖 − 1)
𝑘
𝑖=1

)

2𝑘

𝑖=1

/𝜏2 

If all the variances are equal, then 𝑇𝑘
′ = 𝑆′. Therefore,  𝑆′and  𝑇𝑘

′ are the same test statistic when 

testing the null hypothesis of equality of variances. However,  𝑇𝑘
′ can also be used more 

generally to test any hypotheses that are expressed as functions of the variances. For example, 

one can use 𝑇𝑘
′ to test any null hypothesis in the form 𝐻0: 𝜎𝑖 = 𝜎0𝑖 for any given 𝜎0𝑖 > 0, 𝑖 =

1,… , 𝑘. 

Because 𝜏2 = 2 + (1 − 1 𝑛̅⁄ )(𝛾 − 3) is unknown, a test based on 𝑆′ or 𝑇𝑘
′ requires an estimator 

for the common kurtosis of the populations, 𝛾. For example, to test the null hypothesis of 

homogeneity of variances, Layard proposes the following pooled estimator of the common 

kurtosis: 

𝛾 =
∑ ∑ (𝑌𝑖𝑗 − 𝑌̅𝑖)

4𝑛𝑖
𝑗=1

𝑘
𝑖=1

[∑ ∑ (𝑌𝑖𝑗 − 𝑌̅𝑖)
2𝑛𝑖

𝑗=1
𝑘
𝑖 ]

2∑𝑛𝑖

𝑘

𝑖=1

 

Layard points out, however, that 𝛾 is not necessarily a consistent estimator of the common 

kurtosis when the variances are not equal. 

In the special case of two-sample designs, one may assess the magnitude of the difference 

between the standard deviations by testing the null hypothesis 𝐻0: 𝜎1/𝜎2 = 𝜌0 for some given 

hypothesized ratio 𝜌0 > 0. However, one may assess this difference more directly by calculating 

the CI for the ratio of the standard deviations. 

If 𝜌0 = 1, then the null hypothesis is equivalent to the hypothesis of homogeneity of variance. 

Therefore, one can base the test on 𝑇2
′ = 𝑆′, after one substitutes the two-sample version of 

Layard’s kurtosis estimator for 𝛾 in the expression of 𝜏2 = 2 + (1 − 1 𝑛̅⁄ )(𝛾 − 3) to obtain 𝜏̂2.  

However, if 𝜌0 ≠ 1, then the test must be based on 𝑇2
′ rather than 𝑆′. In addition, if 𝜌0 ≠ 1, then 

Layard’s pooled kurtosis estimator is not necessarily consistent, and thus cannot be used to 

estimate the common kurtosis of the populations. Therefore, an alternative pooled kurtosis 

estimator—one that is consistent for any hypothesized ratio 𝜌0 > 0—is required.  

We next derive such an estimator. Because it is a function of 𝜌0, we denote the estimator as 

𝛾𝑃(𝜌0). We also define the test statistic 𝑇2 = 𝜏
2𝑇2

′/𝜏̂2, where 𝜏̂2 = 2 + (1 − 1 𝑛̅⁄ )(𝛾𝑃(𝜌0) − 3). By 

Slutzky’s theorem, 𝑇2 is asymptotically distributed as a chi-square distribution with 1 degree of 

freedom. Finally, we invert 𝑇2 to obtain CIs for 𝜌 = 𝜎1/𝜎2. 
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3. CI for the Ratio of the Standard 
Deviations 

The previous section details the need for an alternative kurtosis estimator when testing null 

hypotheses that are stated in terms of the ratio of the variances or standard deviations. The 

following result provides that estimator. 

RESULT 1 

For any given 𝜌 = 𝜎1/𝜎2 > 0, a consistent pooled kurtosis estimator of the common population 

kurtosis in the two-sample model may be given as 

𝛾𝑃(𝜌) = (𝑛1 + 𝑛2)
∑ (𝑌1𝑗 − 𝑌̅1)

4𝑛1
𝑗=1 + 𝜌4∑ (𝑌2𝑗 − 𝑌̅2)

4𝑛2
𝑗=1

[(𝑛1 − 1)𝑆1
2 + 𝜌2(𝑛2 − 1)𝑆2

2]2
 

The proof for this result can be found in Appendix A. 

As expected, 𝛾𝑃(1) is identical to Layard’s pooled kurtosis estimator, 𝛾, since 𝜎1/𝜎2  = 1 implies 

that the standard deviations (or variances) are equal.  

The statistic 𝑇2
′, which is the two-sample version of the general statistic 𝑇𝑘

′ , is given as 

𝑇2
′ =

(ln 𝜌̂2 − ln𝜌2)2

(
1

𝑛1 − 1
+

1
𝑛2 − 1

) 𝜏2
 

where 𝜌̂ = 𝑆1/𝑆2, 𝜌 = 𝜎1/𝜎2, and 𝜏2 = 2 + (1 − 1 𝑛̅⁄ )𝛾̂𝑒 = 2 + (1 − 1 𝑛̅⁄ )(𝛾 − 3). 

As indicated in Layard (1973), in large samples, 𝜏2 ≅ Var((𝑛𝑖 − 1)
1/2 ln 𝑆𝑖

2) . Bonett (2006) uses 

an alternative approximation, which is also adopted in Shoemaker (2003), Var((𝑛𝑖 −

1)1/2 ln 𝑆𝑖
2) ≅ 𝛾 − (𝑛𝑖 − 3)/𝑛𝑖. In large samples, these approximations are equivalent. However, 

Shoemaker reports that the latter version is advantageous when using his test of the equality of 

variances with small samples. Using this adjustment, the statistic 𝑇2
′  can be modified as 

𝑇2
′ =

(ln 𝜌̂2 − ln𝜌2)2

𝛾 − 𝑔1
𝑛1 − 1

+
𝛾 − 𝑔2
𝑛2 − 1

 

where 𝑔𝑖 = (𝑛𝑖 − 3)/𝑛𝑖. 

It follows then, that the test statistic 𝑇2 = 𝜏
2𝑇2

′/𝜏̂2 for testing the null hypothesis 𝐻0: 𝜌 = 𝜌0 is 

given as 

𝑇2 =
(ln 𝜌̂2 − ln𝜌0

2)2

𝛾𝑃(𝜌0) − 𝑔1
𝑛1 − 1

+
𝛾𝑃(𝜌0) − 𝑔2
𝑛2 − 1

 

In this expression of 𝑇2, the square root of the denominator can be viewed as a large-sample 

estimate of the standard error for the pooled kurtosis. 
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Moreover, in the expression of 𝛾𝑃(1) ≡ 𝛾, Bonett (2006) uses the trimmed sample means with 

the trim proportion 1/[2(𝑛𝑖 − 4)
1/2]. Accordingly, we make the same adjustment to the pooled 

kurtosis estimator: 

𝛾𝑃(𝜌) = (𝑛1 + 𝑛2)
∑ (𝑌1𝑗 −𝑚1)

4𝑛1
𝑗=1 + 𝜌4∑ (𝑌2𝑗 −𝑚2)

4𝑛2
𝑗=1

[(𝑛1 − 1)𝑆1
2 + 𝜌2(𝑛2 − 1)𝑆2

2]2
 

where 𝑚𝑖 is the trimmed mean for sample 𝑖, with the trim proportion 1/[2(𝑛𝑖 − 4)
1/2]. This 

version of the pooled kurtosis estimator and the earlier version are asymptotically equivalent 

since the trimmed mean 𝑚𝑖 is a consistent estimator of the population mean 𝜇𝑖 . This alternative 

version, however, may improve the small-sample performance of the test based on 𝑇2. 

The test statistic 𝑇2 may now be inverted to derive an approximate CI for the ratio of the 

variances or standard deviations. But, first, we briefly describe the misstep in the derivation of 

the Bonett (2006) CIs for the ratio of the standard deviations. 

3.1  
Rather than inverting 𝑇2 to obtain the CI, Bonett (2006) inverts the following statistic 

𝑇 =
(ln 𝜌̂2 − ln 𝜌2)2

𝛾𝑃(1) − 𝑔1
𝑛1 − 1

+
𝛾𝑃(1) − 𝑔2
𝑛2 − 1

 

Consequently, the resulting interval is simply the acceptance region for the test of the equality 

of variances. This is because the pooled kurtosis estimator 𝜌̂𝑃(1) is consistent only when the 

variances are equal, or equivalently when the hypothesized ratio is 1. The resulting interval is 

reported in Bonett (2006) as 

exp[ln(𝑐 𝑆1
2/𝑆2

2) ± 𝑧𝛼/2𝑠𝑒] 

where 

𝑠𝑒2 =
𝛾(1) − 𝑔1
𝑛1 − 1

+
𝛾(1) − 𝑔2
𝑛2 − 1

 

The constant 𝑐 is included as a small-sample adjustment to mitigate the effect of unequal tail 

error probabilities in unbalanced designs. This constant is given by 

𝑐 =
𝑛1

𝑛1 − 𝑧𝛼/2

𝑛2 − 𝑧𝛼/2

𝑛2
 

The constant vanishes when the designs are balanced and its effect becomes negligible with 

increasing sample sizes. 

Table 1 illustrates the consequences of misinterpreting the above intervals as CIs. These results 

are based on a small simulation study in which we compute simulated coverage probabilities 

based on Bonett’s (2006) intervals. For the equal variance cases (left column), we draw two 

independent samples from the standard normal distribution. For the unequal variance cases 

(right column), we scale the observations of the second sample by a constant factor of 4. The 
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estimated coverage probabilities are based on 100,000 replicates. The targeted nominal 

coverage is 0.95. 

Table 1 Effect of Unequal Population Variances on Bonett’s (2006) CIs (𝛼 = 0.05) 

𝒏𝟏,  𝒏𝟐 

Simulated Coverage Probabil it ies  

Equal Variances  Unequal Variances 

10, 10 0.963 0.972 

50, 50 0.952 0.991 

100, 100 0.952 0.994 

If the intervals were based on a consistent pooled kurtosis estimator, then one would expect the 

coverage probabilities in the two cases to be identical. However, notice that the intervals are 

consistently more conservative when the variances are unequal. Furthermore, the coverage 

probabilities approach 1 as the sample sizes increase. Note that similar results are obtained with 

Shoemaker’s (2003) approximate CIs. 

3.2 Calculations for the CI 
Consider the problem of testing the null hypothesis 𝐻0: 𝜌 = 𝜌0 against the alternative hypothesis 

𝐻𝐴: 𝜌 ≠ 𝜌0, where 𝜌 = 𝜎1/𝜎2 and 𝜌0 > 0, based on the test statistic 𝑇2 given earlier. Under the 

null hypothesis, the test statistic 

𝑇2 =
(ln 𝜌̂2 − ln𝜌0

2)2

𝛾𝑃(𝜌0) − 𝑔1
𝑛1 − 1

+
𝛾𝑃(𝜌0) − 𝑔2
𝑛2 − 1

 

is asymptotically distributed as a chi-square distribution with 1 degree of freedom. Thus, the test 

rejects the null hypothesis at the 𝛼 level of significance if and only if 

(ln 𝜌̂2 − ln𝜌0
2)2 > 𝑧𝛼/2

2 (
𝛾𝑃(𝜌0) − 𝑔1
𝑛1 − 1

+
𝛾𝑃(𝜌0) − 𝑔2
𝑛2 − 1

) 

where 𝑧𝛼 denotes the 𝛼 × 100th upper percentile point of the standard normal distribution. 

Note that the 𝛼 × 100th upper percentile point of the chi-square distribution with 1 degree of 

freedom, 𝜒1,𝛼
2  , satisfies the following condition: 𝜒1,𝛼

2 = 𝑧𝛼/2
2 . 

Bonett's (2006) simulation results show that the small-sample adjustment to reduce the effect of 

unequal tail error probabilities in unbalanced designs worked well. Thus, we make a similar 

adjustment for the test based on 𝑇2. When this adjustment is made, the test rejects the null 

hypothesis if an only if 

(ln 𝜌0
2 − ln(𝑐𝜌̂2))2 > 𝑧𝛼/2

2 (
𝛾𝑃(𝜌0) − 𝑔1
𝑛1 − 1

+
𝛾𝑃(𝜌0) − 𝑔2
𝑛2 − 1

) 
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where 𝑐 is Bonett's adjustment constant given as 

𝑐 =
𝑛1

𝑛1 − 𝑧𝛼/2

𝑛2 − 𝑧𝛼/2

𝑛2
 

Equivalently, an approximate (1 − 𝛼)100 percent confidence set for 𝜌 = 𝜎1/𝜎2 based on 𝑇2 is 

given by 

{𝜌 ∈ (0,∞): (ln 𝜌2 − ln(𝑐𝜌̂2))2 − 𝑧𝛼/2
2 (

𝛾𝑃(𝜌) − 𝑔1
𝑛1 − 1

+
𝛾𝑃(𝜌) − 𝑔2
𝑛2 − 1

) ≤ 0} 

Note that 𝑐 has no effect in balanced designs and has only a negligible effect in large-sample 

unbalanced designs. 

The next result provides an alternative expression of the confidence set in a form that is 

convenient for describing its nature. In this expression, the pooled kurtosis estimator is rewritten 

in terms of the individual sample kurtoses given as 

𝛾𝑖 = 𝑛𝑖
∑ (𝑌𝑖𝑗 −𝑚𝑖)

4𝑛𝑖
𝑗=1

[(𝑛𝑖 − 1)𝑆𝑖
2]
2 , 𝑖 = 1,2 

RESULT 2 

An approximate (1 − 𝛼)100 percent confidence set for 𝜌 = 𝜎1/𝜎2 based on 𝑇2 may be expressed 

as 

𝜌̂√𝑐 {𝑟 ∈ (0,∞):𝐻(𝑟2) ≤ 0} 

or equivalently, the confidence set for 𝜌2 = 𝜎1
2/𝜎2

2 may be expressed as 

𝑐𝜌̂2 {𝑟 ∈ (0,∞):𝐻(𝑟) ≤ 0} 

where  

𝐻(𝑥) = (ln 𝑥)2 − 𝑧𝛼/2
2 𝑠𝑒2(𝑐𝑥), 𝑥 > 0 

𝑠𝑒2(𝑥) = 𝐴
𝛾1 𝐾

2/𝑛1 + 𝛾2 𝑥
2/𝑛2

(𝐾 + 𝑥)2
− 𝐵 

𝐴 =
(𝑛1 + 𝑛2)(𝑛1 + 𝑛2 − 2)

(𝑛1 − 1)(𝑛2 − 1)
, 𝐵 =

𝑔1
𝑛1 − 1

+
𝑔2

𝑛2 − 1
,𝐾 =

𝑛1 − 1

𝑛2 − 1
 

For the proof of this result, see Appendix B. 

It is easily verified that the function 𝐻(𝑥) is continuous on the positive real line, with 𝐻(0) =

𝐻(+∞) = +∞ and 𝐻(1) < 0. Therefore, by the intermediate values theorem, the function 𝐻(𝑥) 

admits at least one root in the interval (0, 1) and at least one root in the interval (0, +∞).  

The next result describes the confidence set as an interval or union of disjoint intervals. 

RESULT 3 

If the function 𝐻(𝑥) has exactly two roots, 𝑥𝐿 and 𝑥𝑈, then 0 < 𝑥𝐿 < 1 < 𝑥𝑈 and the confidence 

set for  𝜌2 = 𝜎1
2/𝜎2

2 is the interval given by 

[𝑐𝜌̂2𝑥𝐿, 𝑐𝜌̂
2𝑥𝑈] 
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It follows, then, that the CI for 𝜌 = 𝜎1/𝜎2 is the interval, 

[𝜌̂√𝑐𝑥𝐿 , 𝜌̂√𝑐𝑥𝑈] 

On the other hand, if the function 𝐻(𝑥) has more than two roots, then the confidence set for 

𝜌2 = 𝜎1
2/𝜎2

2 is the union of non-overlapping intervals. The endpoints of each interval are the 

consecutive roots where the function opens upward. 

For the proof of this result, see Appendix C. 

REMARK 

Although it is mathematically possible for the function 𝐻(𝑥) to admit more than two roots, we 

have observed that this occurs only with extremely unusual and practically meaningless designs 

where one or both samples are either too small or severely unbalanced. We conjecture that 

𝐻(𝑥) has either two or four roots. 

The following example is based on data that were fabricated to force the function 𝐻(𝑥) to have 

more than two roots. The data are summarized as follows: 𝑛1 = 169,  𝑛2 = 7,  𝑆1 = 301.855,  

𝑆2 = 4606.170,  𝛾1 = 1.877,  𝛾2 = 6.761,  𝑐 = 0.728,  𝐴 = 30.381,  𝐵 = 0.101,  and  𝐾 = 28.000. 

For 𝛼 = 0.05, the function 𝐻(𝑥) is given as 

𝐻(𝑥) = (ln 𝑥)2−1.9602 (30.381
1.877 × 282/169 + 6.761 × (.728𝑥)2/7

(28.000 + 0.728𝑥)2
− 0.101) 
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The function 𝐻(𝑥) in this case has four roots. The graph of the function is displayed below. Note 

that the fourth root is not visible on the graph because it is too large. However, we know that 

the fourth root exists because 𝐻(+∞) = +∞. 

 

The four roots are numerically computed as 𝑥1 = 0.389, 𝑥2 = 3.282, 𝑥3 = 10.194, and 𝑥4 =

39685.0. The estimated ratio of the standard deviations is 𝜌̂ = 𝑆1/𝑆2  = 0.066. The confidence set 

for 𝜌2 = 𝜎1
2/𝜎2

2  may be expressed as 

[𝑐 𝜌̂2𝑥1, 𝑐 𝜌̂
2𝑥2] ∪ [𝑐 𝜌̂

2𝑥3, 𝑐 𝜌̂
2𝑥4] = [0.001, 0.010] ∪ [0.032, 124.072] 

The confidence set for the ratio of the standard deviations, 𝜌, is obtained by taking the square 

root of the endpoints of the intervals. 

When the samples are not too small (𝑛𝑖 ≥ 10) and the disparity between their sizes is not great, 

the function 𝐻(𝑥) typically admits two roots. One root is below unity, and the other root is 

above unity as described in Result 2. Here is an example that is based on randomly generated 

data. The data can be summarized as follows:  𝑛1 = 10,  𝑛2 = 12,  𝑆1 = 1.150,  𝑆2 = 1.043,  𝛾1 =

2.704,  𝛾2 = 3.671,  𝑐 = 1.041,  𝐴 = 4.444,  𝐵 = 0.146,  and  𝐾 = 0.818. 

For 𝛼 = 0.05, the function 𝐻(𝑥) is given in this case as 

𝐻(𝑥) = (ln 𝑥)2−1.9602 (4.444
2.704 × 0.8182/10 + 3.671 × (1.041𝑥)2/12

(0.818 + 1.041𝑥)2
− 0.146) 
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The function 𝐻(𝑥) has two roots as shown below: 

 

The two roots are numerically computed as 𝑥1 = 0.200 and 𝑥2 = 6.824. The estimated ratio of 

the standard deviations is 𝜌̂ = 𝑆1/𝑆2  = 1.102. The confidence set for 𝜌2 = 𝜎1
2/𝜎2

2  is the interval 

given as 

[𝑐 𝜌̂2𝑥1, 𝑐 𝜌̂
2𝑥2] = [0.253, 8.634] 

The CI for the ratio of the standard deviations, 𝜌, is obtained by taking the square root of the 

endpoints of the above interval. 

We now describe two algorithms for finding the confidence limits. 

The first algorithm consists of using a numerical root finder procedure to find the roots of the 

function 𝐻(𝑥). The root that corresponds to a lower confidence limit for the ratio of the 

variances is confined in the interval (0, 1). If we denote this root by 𝑥𝐿, then, by Result 3, the 

lower confidence limit for the ratio of the variances is calculated as 𝑐𝜌̂2𝑥𝐿 , and the lower 

confidence limit for the ratio of the standard deviation is obtained as 𝜌̂√𝑐𝑥𝐿. Similarly, the upper 

confidence limit for the ratio of the variances is 𝑐𝜌̂2𝑥𝑈 , and the upper confidence limit for the 

ratio of the standard deviations is 𝜌̂√𝑐𝑥𝑈, where 𝑥𝑈 > 1 is the other root of 𝐻(𝑥). A simple 

approach for finding the upper confidence limit is to use the fact that the lower limit for 1/𝜌2  is 

the upper limit for 𝜌2. First, the roles of the first sample and the second sample are interchanged 

in the expression of the function 𝐻(𝑥) as if one were computing the confidence limit for the 

ratio 1/𝜌2 = 𝜎2
2/𝜎1

2. Second, the algorithm for finding the lower bound is applied to the new 

function 𝐻(𝑥). Finally, the resulting limit is inverted to obtain the desired upper confidence limit. 
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An alternative approach consists of recursively calculating the lower confidence limit for the 

ratio of the variances using the recurrence relation given by 

𝜌0
2 = 1

𝜌𝑖+1
2 = exp [ln(𝑐 𝜌̂2) − 𝑧𝛼/2√

𝛾̂𝑃(𝜌𝑖) − 𝑔1
𝑛1 − 1

+
𝛾𝑃(𝜌𝑖) − 𝑔2
𝑛2 − 1

]
, 𝑖 = 0,1,2,… 

The lower confidence limit for the ratio of the variances is 𝜌𝑗+1
2 , such that |𝜌𝑗+1

2 − 𝜌𝑗
2| < 𝜀, where 

𝑗 > 0 and 𝜀 is chosen to be small (for example 𝜀 = 10−6 ). To find the upper confidence limit, we 

simply replace −𝑧𝛼/2 with +𝑧𝛼/2 in the above. 

Evidently, the two algorithms for computing the confidence limits are equivalent because the 

recursive procedure is essentially an iterative procedure for solving the equation 𝐻(𝜌2/(𝑐𝜌̂2)) =

0 for 𝜌2. The recursive algorithm is easier to implement, and therefore is a useful alternative 

when a root finder procedure is not available.  

4. Simulation Studies and Results 
In this paper, we derived a procedure to extend Layard’s test for equality of two variances to test 

the ratio of variances. We call this procedure the Extended Layard’s Test for the Ratio, or ELTR. In 

this section, we investigate the small-sample properties of CIs based on the ELTR procedure. We 

follow the general approach taken by Bonett (2006). 

We compare CIs that are based on the ELTR procedure to CIs that are based on test 𝐿50 (Pan, 

1999) and test 𝑊50 (the Levene/Brown-Forsythe test). For Study 1, we also include, for 

comparison, CIs that are based on the classical F test. It is well-known that, when the data are 

normally distributed, the classical F test is optimal. Note that the calculations for CIs based on 

tests 𝑊50and 𝐿50 are given in Pan (1999). The calculations for CIs based on the F test can be 

found in many introductory statistics text books. They are also given in Bonett (2006). 

We conducted three simulation studies, each with 100,000 sampling replicates. Each replicate 

consists of two independent samples that are small to moderate in size. Each sample was drawn 

from a parent distribution with known properties including symmetry, asymmetry, heavy tails, 

and light tails. The standard error associated with each simulation is approximately 0.0009, 

0.0007, and 0.0003 for nominal confidence levels of 90%, 95%, and 99%, respectively.  

To evaluate the performance of each procedure, we report the achieved coverage probability 

and the mean width of the simulated intervals for the ratio of the variances. Some of the 

intervals associated with test 𝑊50 had infinite width (a possibility exposed by Pan (1999)). In such 

cases, we report both the mean width of the finite intervals and the percentage of intervals with 

infinite width. All simulations were conducted using Version 8 of the Mathematica software 

package. 
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Study 1: Comparison of Coverage Probabilities for 
Normal Data 

In the first study, we generate random samples of various sizes from the normal distribution. The 

results are presented in Table 2. 

Table 2 Comparison of Coverage Probabilities and Average Interval Widths 

   Procedure 

𝟏 − 𝜶 𝒏𝟏,  𝒏𝟐 Measure F ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 

0.90 10, 10 Coverage 0.898 0.918 0.913 0.921 

  Width 3.72 5.06 4.72 8.03 

(0.01%) 

 30, 10 Coverage 0.900 0.909 0.897 0.911 

  Width 2.42 3.01 3.58 3.17 

 25, 25 Coverage 0.902 0.907 0.914 0.916 

  Width 1.61 1.73 1.85 1.938 

 50, 50 Coverage 0.900 0.901 0.906 0.907 

  Width 1.03 1.06 1.13 1.15 

0.95 10, 10 Coverage 0.949 0.963 0.958 0.964 

  Width 4.90 7.72 6.52 497.24 

(0.20%) 

 30, 10 Coverage 0.950 0.957 0.945 0.959 

  Width 2.98 4.91 4.67 4.07 

 25, 25 Coverage 0.951 0.955 0.958 0.961 

  Width 1.99 2.24 2.31 2.49 

 50, 50 Coverage 0.951 0.952 0.953 0.954 

  Width 1.25 1.31 1.38 1.41 



METHOD 14 

   Procedure 

𝟏 − 𝜶 𝒏𝟏,  𝒏𝟐 Measure F ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 

0.99 10, 10 Coverage 0.989 0.993 0.992 0.994 

  Width 8.29 17.76 12.52 > 104 

(8.8%) 

 30, 10 Coverage 0.990 0.992 0.986 0.994 

  Width 4.26 15.76 8.26 6.77 

 25, 25 Coverage 0.990 0.992 0.992 0.993 

  Width 2.86 3.66 3.43 4.03 

 50, 50 Coverage 0.990 0.991 0.991 0.991 

  Width 1.71 1.89 1.92 2.02 

The shaded rows display the achieved coverage probabilities (Coverage) for each procedure at 

each confidence level (1 − 𝛼) and each combination of sample sizes (𝑛1, 𝑛2). The mean of the 

interval widths (Width) is displayed below each coverage probability. If any intervals for a 

condition were infinite, then we report both the mean for the finite intervals and the percentage of 

intervals that were infinite. 

As expected, the results show that the CIs associated with the F procedure are the most accurate 

and the most precise. The coverage probabilities achieved with the F procedure are closer to the 

target coverage than are those associated with the other procedures. And the average widths of 

the intervals associated with the F procedure are smaller than those associated with the other 

procedures. The table also reveals, however, that CIs that are constructed using the ELTR and 𝐿50 

procedures are almost as accurate and precise as those based on the F procedure.  

The intervals based on test 𝑊50 are also fairly accurate. However, 𝑊50 intervals can be very wide 

and can even have infinite width, depending on the size of the samples. Note that, when both 

samples have only 10 observations, at least 0.01% of the intervals produced by the 𝑊50 

procedure are infinitely wide. And the percentage of infinite intervals increases when the target 

coverage increases. Under most conditions, the mean widths of the ELTR and 𝐿50 intervals are 

smaller than the mean widths of the 𝑊50 intervals. 

Study 2: Comparison of Coverage Probabilities for 
Nonnormal Data 

The second study is designed to evaluate and compare the performance of the ELTR, 𝐿50, and 

𝑊50 procedures when parent distributions are not normal. We also include a contaminated 

normal distribution in order to assess the impact of outliers on the performance of the 

procedures. We denote this contaminated distribution as CN(0.1, 3) to indicate that, while 90% 
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of observations are drawn from the standard normal distribution, the remaining 10% are drawn 

from a normal population with a mean of 0 and a standard deviation of 3. The results are 

presented in Table 3. 

Table 3 Comparison of Coverage Probabilities and Average Interval Widths in some Nonnormal 

Models Nominal Confidence Level is 1 − 𝛼 = 0.95 

Distribution 

[𝜸] 

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 Distribution 

[𝜸] 

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 

Uniform    𝝌𝟐(𝟓)    

[1.8]    [5.4]    

10, 10 0.971 0.971 0.966 10, 10 0.956 0.938 0.956 

 5.27 4.87 42.08 

(0.1%) 

 11.61 8.78 > 104 

(2.6%) 

10, 30 0.964 0.961 0.957 10, 30 0.959 0.923 0.956 

 2.51 2.4 2.89  6.25 4.14 190.645 

(0.3%) 

25, 25 0.967 0.972 0.968 25, 25 0.956 0.944 0.954 

 1.43 1.79 1.88  3.66 2.92 3.26 

50, 50 0.959 0.962 0.959 50, 50 0.959 0.946 0.952 

 0.83 1.06 1.08  2.07 1.7 1.77 

Beta (3, 3)    Exponential    

[2.5]    [9]    

10, 10 0.968 0.966 0.966 10, 10 0.947 0.916 0.950 

 6.26 5.59 254.62 

(0.1%) 

 20.99 14.47 > 104 

(9.1%) 

10, 30 0.960 0.954 0.960 10, 30 0.954 0.896 0.953 

 3.14 2.76 3.71  10.46 6.19 > 104 

(4.1%) 

25, 25 0.959 0.966 0.965 25, 25 0.956 0.931 0.951 

 1.81 2.06 2.18  6.09 4.13 5.48 

(0.008%) 

50, 50 0.957 0.959 0.958 50, 50 0.962 0.942 0.952 

 1.06 1.23 1.26  3.18 2.24 2.38 



METHOD 16 

Distribution 

[𝜸] 

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 Distribution 

[𝜸] 

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 

Laplace    𝛘𝟐(𝟏)    

[6]    [15]    

10, 10 0.946 0.935 0.961 10, 10 0.928 0.889 0.947 

 13.47 10.45 > 104 

(3.0%) 

 55.09 37.4 > 105 

(25.1%) 

10, 30 0.947 0.919 0.957 10, 30 0.943 0.882 0.956 

 6.78 4.82 > 104 

(0.4%) 

 18.71 11.14 > 106 

(25.7%) 

25, 25 0.945 0.940 0.952 25, 25 0.952 0.925 0.954 

 4.00 3.372 3.86  10.97 6.84 > 104 

(0.4%) 

50, 50 0.952 0.949 0.955 50, 50 0.958 0.936 0.951 

 2.19 1.91 1.99  5.08 3.31 3.75 

(0.001%) 

𝒕(𝟓)    Lognormal    

[9]    [113.9]    

10, 10 0.957 0.946 0.965 10, 10 0.923 0.876 0.955 

 11.07 8.81 > 103 

(2.0%) 

 59.22 46.15 > 105 

(23.0%) 

10, 30 0.957 0.930 0.959 10, 30 0.949 0.866 0.958 

 6.06 4.24 > 103 

(0.7%) 

 29.13 17.67 > 106 

(31.6%) 

25, 25 0.954 0.948 0.960 25, 25 0.947 0.917 0.965 

 3.54 2.93 4.86 

(0.01%) 

 16.21 8.73 > 104 

(2.4%) 

50, 50 0.954 0.947 0.954 50, 50 0.955 0.928 0.960 

 2.10 1.71 1.77 

(0.003%) 

 8.62 4.11 164.38 

(0.2%) 
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Distribution 

[𝜸] 

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 Distribution 

[𝜸] 

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 

Half Normal    CN(0.1, 3)    

[3.9]    [8.3]    

10, 10 0.956 0.942 0.954 10, 10 0.977 0.965 0.979 

 10.41 7.89 > 104 

(1.5%) 

 12.64 9.52 > 104 

(4.9%) 

10, 30 0.959 0.930 0.954 10, 30 0.981 0.952 0.979 

 5.18 3.64 13.00 

(0.02%) 

 7.82 4.71 944.68 

(1.1%) 

25, 25 0.959 0.952 0.959 25, 25 0.982 0.972 0.981 

 3.01 2.62 2.88  4.63 3.22 3.71 

50, 50 0.960 0.951 0.954 50, 50 0.983 0.972 0.978 

 1.69 1.54 1.59  2.64 1.83 1.91 

The shaded rows display the achieved coverage probabilities for each procedure, parent 

distribution, and combination of sample sizes. The mean of the interval widths is displayed below 

each coverage probability. If any intervals for a condition were infinite, then we report both the 

mean for the finite intervals and the percentage of intervals that were infinite. The kurtosis (𝛾) of 

each parent distribution is displayed in brackets. 

For symmetric, light-tailed distributions, the results indicate that all three methods yield similarly 

conservative coverage probabilities. However, the ELTR and 𝐿50 intervals are more precise for 

small samples than are the 𝑊50 intervals. For example, when samples are drawn from a Beta 

distribution with parameters of (3, 3), the achieved coverage probabilities for the ELTR and 𝐿50 

intervals are at least as accurate as those of the 𝑊50 intervals, but the 𝑊50 intervals are 

consistently wider. 

The ELTR and 𝑊50intervals are also a bit conservative for symmetric, heavy-tailed distributions, 

while the 𝐿50 intervals are liberal. The 𝐿50 intervals are even more liberal when designs are 

unbalanced. For example, when samples of sizes 10 and 30 are drawn from the Laplace 

distribution, the achieved coverage probability for the 𝐿50 intervals is 0.919. And when the same 

sized samples are drawn from a t-distribution with 5 degrees of freedom, the achieved coverage 

probability for the 𝐿50 intervals is 0.930. 

The 𝐿50 intervals are also quite liberal when small samples are drawn from highly skewed, heavy-

tailed distributions. For example, when samples are drawn from a lognormal distribution, the 

achieved coverage can be as low as 0.866. For these distributions, the 𝑊50 method is the least 

liberal of the three methods. However, too many of the 𝑊50 intervals have infinite width. For 

example, when samples are drawn from the chi-square distribution with 1 degree of freedom 
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(χ2(1)), more than 25% of the 𝑊50 intervals can have infinite width. The ELTR intervals are 

somewhat less accurate, but considerably narrower and thus more informative than the 𝑊50 

intervals. 

Finally, we note that all three procedures are adversely affected by outliers. The 𝐿50 method is 

the least affected, which might be expected because the 𝐿50 method was derived to reduce the 

effect of outliers on test 𝑊50 (Pan, 1999). When samples are drawn from the contaminated 

normal distribution, CN(0.1, 3), the minimum of the achieved coverage probabilities for the ELTR 

and 𝑊50 procedures is 0.977. Additional simulation results (not shown) indicate that these 

intervals improve only slowly with increasing sample sizes. 

Study 3: Sensitivity to the Equal-Kurtosis 
Assumption 

Our final study investigates the sensitivity of the ELTR procedure to the assumption of equal 

kurtosis under which it is derived. We examine the performance of the ELTR procedure when the 

kurtoses of the parent populations are not equal, that is when 𝛾1 ≠ 𝛾2. We also include the 𝐿50 

and 𝑊50 procedures, because they are derived under the assumption that the populations are 

similar. This similarity assumption is undermined when the kurtoses of the parent populations 

are not equal. The results are presented in Table 4. 

Table 4 Sensitivity of the ELTR Procedure to the Equal-Kurtosis Assumption Nominal Confidence 

Level is 1 − 𝛼 = 0.95 

Dist. 1,  Dist.  2 

[𝜸𝟏,  𝜸𝟐]  

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 Dist. 1,  Dist.  2 

[𝜸𝟏,  𝜸𝟐]  

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 

Beta (3, 3), 

Normal 

[2.5, 3] 

   Normal, 

CN (0.9, 3) 

[3, 8.3] 

   

10, 10 0.964 0.961 0.964 10, 10 0.955 0.948 0.951 

 0.27 0.23 204.50 

(0.20%) 

 6.88 5.16 > 104 

(4.89%) 

30, 10 0.946 0.939 0.946 30, 10 0.941 0.910 0.942 

 0.16 0.17 0.15  5.26 3.77 3.20 

10, 30 0.966 0.956 0.967 10, 30 0.961 0.950 0.958 

 0.14 0.11 0.17  4.26 2.40 630.42 

(1.10%) 

50, 50 0.951 0.950 0.949 50, 50 0.936 0.910 0.907 

 0.04 0.05 0.05  1.27 1.11 1.19 
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Dist. 1,  Dist.  2 

[𝜸𝟏,  𝜸𝟐]  

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 Dist. 1,  Dist.  2 

[𝜸𝟏,  𝜸𝟐]  

𝒏𝟏,  𝒏𝟐 

ELTR 𝑳𝟓𝟎 𝑾𝟓𝟎 

Normal, 

Laplace 

[3, 6] 

   Half Normal, 

 𝝌𝟐(𝟓) 

[3.9, 5.4] 

   

10, 10 0.941 0.935 0.947 10, 10 0.956 0.940 0.954 

 6.67 5.17 > 106 

(2.90%) 

 0.42 0.32 304.41 

(2.60%) 

30, 10 0.912 0.888 0.914 30, 10 0.954 0.918 0.949 

 5.06 3.85 3.21  0.33 0.22 0.20 

10, 30 0.963 0.943 0.955 10, 30 0.962 0.934 0.958 

 3.33 2.25 > 103 

(0.40%) 

 0.23 0.15 3.28 

(0.30%) 

50, 50 0.935 0.894 0.889 50, 50 0.955 0.941 0.945 

 0.98 1.04 1.12  0.07 0.06 0.07 

Normal, 

Half Normal 

[3, 3.9] 

   𝝌𝟐(𝟓), 

Exponential 

[5.4, 9] 

   

10, 10 0.956 0.948 0.957 10, 10 0.938 0.914 0.940 

 28.16 20.65 > 104 

(1.50%) 

 211.17 137.88 > 106 

(9.10%) 

30, 10 0.946 0.924 0.947 30, 10 0.928 0.875 0.929 

 20.59 14.83 12.78  194.70 93.02 83.02 

10, 30 0.961 0.946 0.962 10, 30 0.968 0.930 0.954 

 14.06 9.37 49.11 

(0.02%) 

 102.35 55.29 > 105 

(3.90%) 

50, 50 0.953 0.950 0.952 50, 50 0.950 0.920 0.923 

 4.32 4.16 4.33  29.64 23.37 25.54 

The shaded rows display the achieved coverage probabilities for each procedure, combination of 

parent distributions (Dist. 1, Dist. 2), and combination of sample sizes. The mean of the interval 

widths is displayed below each coverage probability. If any intervals for a condition are infinite, 

then we report both the mean for the finite intervals and the percentage of intervals that were 

infinite. The kurtosis of each parent distribution (𝛾1, 𝛾2) is displayed in brackets. 
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In general, the performance of the ELTR procedure does not appear to be adversely affected by 

unequal kurtoses when the samples are large enough. However, when designs are unbalanced 

and the smaller sample is obtained from the heavier-tailed distribution, the achieved coverage 

probabilities are liberal. The achieved coverage probabilities are better when the larger sample is 

drawn from the heavier-tailed distribution. 

When sample sizes are large enough, the 𝐿50 and 𝑊50 intervals also appear to be generally 

robust to the dissimilarity of distributions that results from unequal kurtoses. However, note that 

when samples are drawn from a normal distribution and a Laplace distribution, or from a normal 

distribution and a contaminated normal distribution, the coverage probabilities for the 𝐿50 and 

𝑊50 intervals are not stable, even for samples as large as 50. 

The 𝐿50 intervals are generally more liberal than the ELTR and 𝑊50 intervals. In three cases, the 

achieved coverage probabilities for the 𝐿50 intervals are less than 0.90. In contrast, only one of 

the achieved coverage probabilities for the 𝑊50 intervals is less than 0.90. The lowest achieved 

coverage probability for the ELTR intervals is 0.912. 

The previous study (Table 3) shows that all three procedures produce intervals that are 

noticeably more conservative when both samples are drawn from the contaminated normal 

distribution, CN(0.1, 3). The present study shows that all three procedures perform notably 

better when only one sample is drawn from CN(0.1, 3). However, note that the performance of 

the 𝐿50 and 𝑊50 intervals appears to degrade considerably when the sample size increases to 50.  

5. Example 
In this section, we apply all four procedures—F, ELTR, 𝐿50 and 𝑊50—to a data set obtained from 

Pan (1999). Ott (1993, page 352) describes the data as follows: 

A chemist at an iron mine suspects that the variance in the amount (weight, in ounces) of iron 

oxide per pound of ore tends to increase as the mean amount of iron oxide per pound 

increases. To test this theory, ten 1-pound specimens of iron ore are selected from each of two 

locations, one, location 1, containing a much higher mean content of iron oxide than the other, 

location 2. The amounts of iron oxide contained in the ore specimen are shown below: 

Location 1  8.1 7.4 9.3 7.5 7.1 8.7 9.1 7.9 8.4 8.8 

Location 2 3.9 4.4 4.7 3.6 4.1 3.9 4.6 3.5 4.0 4.2 

The 95% CIs for 𝜎2/𝜎1  = 1/𝜌 calculated using the four different methods are given in the 

following table: 

Procedure 95% CI  

F (0.262, 1.055) 

ELTR (0.277, 0.924) 
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Procedure 95% CI  

𝐿50 (Pan) (0.295, 0.938) 

𝑊50 (Levene/Brown-
Forsythe) 

(0.237, 0.908) 

6. Conclusion 
Our simulations show that, in general, the CIs based on the ELTR procedure are as accurate as 

CIs derived from tests 𝐿50 and 𝑊50. However, the ELTR intervals and the 𝐿50 intervals are more 

precise than the 𝑊50 intervals for most distributions. The 𝑊50 intervals tend to be more accurate 

than the ELTR intervals and the 𝐿50 intervals when small samples are drawn from severely 

skewed and heavy-tailed distributions. However, this advantage is usually offset by a remarkable 

loss of precision. The resulting 𝑊50 intervals are typically too wide and are likely to have infinite 

width.  

As designed, the 𝐿50 intervals improve the precision of the 𝑊50 intervals. For skewed 

populations, however, the 𝐿50 intervals are so short that they yield excessively liberal coverage 

probabilities. In contrast, the ELTR intervals are more stable in general. The ELTR intervals are 

usually not too long or too short, so the coverage probabilities are usually not too conservative 

or too liberal. Therefore, the ELTR procedure appears to be the best procedure for most practical 

purposes. 

The ELTR intervals are a bit more laborious to compute than the intervals based on test 𝐿50 or 

test 𝑊50. In general, however, the increased precision (compared to the 𝑊50 intervals) and the 

increased accuracy (compared to the 𝐿50 intervals) more than outweigh the extra computational 

effort. The ELTR procedure has been implemented as part of the Two-Sample Variance analysis 

in Release 17 of Minitab Statistical Software, where it is referred to as Bonett’s procedure. 

For future research, one may consider investigating the small-sample properties of Layard’s test 

in multi-sample designs when Layard’s pooled kurtosis estimator is replaced with Bonett’s more 

robust version, given as 

𝛾𝐴 =
∑ ∑ (𝑌𝑖𝑗 −𝑚𝑖)

4𝑛𝑖
𝑗=1

𝑘
𝑖=1

[∑ ∑ (𝑌𝑖𝑗 −𝑚𝑖)
2𝑛𝑖

𝑗=1
𝑘
𝑖 ]

2∑𝑛𝑖

𝑘

𝑖=1

 

where 𝑚𝑖 is the trimmed mean for sample 𝑖, with the trim proportion 1/[2(𝑛𝑖 − 4)
1/2], and  𝑖 =

1,… , 𝑘. 

In addition, it may be beneficial to use Shoemaker’s approximation of the asymptotic variance of 

the log-transformed sample variance. 

Finally, we note that the intervals proposed by Bonett (2006), while not suitable as CIs, are 

nonetheless remarkably accurate and precise for most distributions when interpreted as 

acceptance regions for the test of the equality of two variances. These acceptance regions are 

well suited to serve as the basis for a graphical procedure for comparing multiple variances. 
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Hochberg, Weiss, and Hart (1982) proposed a similar procedure for testing the equality of 

means. Such a procedure has been implemented as part of the Test for Equal Variances analysis 

in Release 17 of Minitab Statistical Software, where it is referred to as the Multiple Comparisons 

procedure. 

7. Appendices 

Appendix A: Proof of Result 1 
Using the notations and assumptions of Section 2, let 𝑋𝑗 = 𝜌𝑌2𝑗 for a given 𝜌 = 𝜎1/𝜎2. Then  

Var(𝑋𝑗) = 𝜌
2Var(𝑌2𝑗) = 𝜌

2𝜎2
2 = 𝜎1

2 = Var(𝑌1𝑗) 

and 

𝐸 (𝑋𝑗 − 𝜇𝑋𝑗)
4
𝜎𝑋𝑗
4⁄ = 𝜌4 𝐸(𝑌2𝑗 − 𝜇2 )/(𝜌

4 𝜎2
4 ) = 𝐸(𝑌2𝑗 − 𝜇2 )/𝜎2

4 = 𝛾 

Since 𝐸(𝑌1𝑗 − 𝜇1)
4
𝜎1
4⁄ = 𝛾 by assumption, it follows that the parent populations of the two 

samples 𝑌1𝑗 and  𝑋𝑗 = 𝜌𝑌2𝑗have the same variance 𝜎1
2 and the same kurtosis 𝛾. By Layard (1973), 

a consistent pooled kurtosis estimator of 𝛾 based on the two samples 𝑌1𝑗 and 𝑋𝑗 is given as  

𝛾 ′ = (𝑛1 + 𝑛2)
∑ (𝑌1𝑗 − 𝑌̅1)

4𝑛1
𝑗=1 + ∑ (𝑋𝑗 − 𝑋̅)

4𝑛2
𝑗=1

[(𝑛1 − 1)𝑆1
2 + (𝑛2 − 1)𝑆𝑋

2]2
= (𝑛1 + 𝑛2)

∑ (𝑌1𝑗 − 𝑌̅1)
4𝑛1

𝑗=1 + 𝜌4∑ (𝑌2𝑗 − 𝑌̅2)
4𝑛2

𝑗=1

[(𝑛1 − 1)𝑆1
2 + 𝜌2(𝑛2 − 1)𝑆2

2]2

= 𝛾𝑃(𝜌) 

as required. 

Appendix B: Proof of Result 2 
We have already established that an approximate (1 − 𝛼)100 percent confidence set for 𝜌 =

𝜎1/𝜎2 based on 𝑇2 is given by 

{𝜌 ∈ (0,∞): (ln 𝜌2 − ln(𝑐𝜌̂2))2 − 𝑧𝛼/2
2 (

𝛾𝑃(𝜌) − 𝑘1
𝑛1 − 1

+
𝛾𝑃(𝜌) − 𝑘2
𝑛2 − 1

)  ≤ 0} 

The pooled kurtosis estimator can be expressed in terms of the kurtosis estimators for the 

individual samples, which is given by 

𝛾𝑖 = 𝑛𝑖
∑ (𝑌𝑖𝑗 −𝑚𝑖)

4𝑛𝑖
𝑗=1

[(𝑛𝑖 − 1)𝑆𝑖
2]
2 , 𝑖 = 1,2 

More specifically, if we let 𝑡 = 𝜌/𝜌̂, then 

𝛾𝑃(𝜌) = (𝑛1 + 𝑛2)
∑ (𝑌1𝑗 −𝑚1)

4𝑛1
𝑗=1 + 𝜌4∑ (𝑌2𝑗 −𝑚2)

4𝑛2
𝑗=1

[(𝑛1 − 1)𝑆1
2 + 𝜌2(𝑛2 − 1)𝑆2

2]2
= (𝑛1 + 𝑛2)

𝛾1 𝐾
2/𝑛1 + 𝛾2 𝑡

4/𝑛2
(𝐾 + 𝑡2)2

 

where 𝐾 = (𝑛1 − 1)/(𝑛2 − 1).  
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Consequently, the squared standard error term can be expressed as 

𝛾𝑃(𝜌) − 𝑘1
𝑛1 − 1

+
𝛾𝑃(𝜌) − 𝑘2
𝑛2 − 1

= 𝐴
𝛾1 𝐾

2/𝑛1 + 𝛾2 𝑡
4/𝑛2

(𝐾 + 𝑡2)2
− 𝐵 

where 

𝐴 =
(𝑛1 + 𝑛2)(𝑛1 + 𝑛2 − 2)

(𝑛1 − 1)(𝑛2 − 1)
, 𝐵 =

𝑘1
𝑛1 − 1

+
𝑘2

𝑛2 − 1
 

Thus, if we let 𝑟2 = 𝜌2/(𝑐𝜌̂2), then it is easily seen that 

(ln 𝜌2 − ln(𝑐𝜌̂2))2 − 𝑧𝛼/2
2  (

𝛾𝑃(𝜌) − 𝑘1
𝑛1 − 1

+
𝛾𝑃(𝜌) − 𝑘2
𝑛2 − 1

)

= (ln 𝑟2)2 − 𝑧𝛼/2
2 (𝐴

𝛾1 𝐾
2/𝑛1 + 𝛾2 𝑐

2𝑟4/𝑛2
(𝐾 + 𝑐 𝑟2)2

− 𝐵) 

It follows that an approximate (1 − 𝛼)100 percent confidence set for 𝜌 = 𝜎1/𝜎2 based on 𝑇2 may 

be given as  

𝜌̂√𝑐 {𝑟 ∈ (0,∞):𝐻(𝑟2) ≤ 0} 

or equivalently, the confidence set for 𝜌2 = 𝜎1
2/𝜎2

2 may be expressed as 

𝑐𝜌̂2 {𝑟 ∈ (0,∞):𝐻(𝑟) ≤ 0} 

where 

𝐻(𝑥) = (ln 𝑥)2 − 𝑧𝛼/2
2 𝑠𝑒2(𝑐𝑥), 𝑥 > 0 

and 

𝑠𝑒2(𝑥) = 𝐴
𝛾1 𝐾

2/𝑛1 + 𝛾2 𝑥
2/𝑛2

(𝐾 + 𝑥)2
− 𝐵 

Appendix C: Proof of Result 3 
It is easily verified that 𝐻(𝑥) is continuous on the positive real line, with 𝐻(0) = 𝐻(+∞) = +∞ 

and 𝐻(1) < 0. By the intermediate value theorem, the function 𝐻(𝑥) admits at least one root in 

the interval (0, 1) and at least one root in the interval (0, +∞). Thus, if the function 𝐻(𝑥) has 

exactly two roots, then one root is below 1 and the other is above 1. Since this function opens 

upward, the inequality 𝐻(𝑟) ≤ 0 is satisfied if 𝑟 lies between the roots. These roots define the 

endpoints of the CI for 𝜌2/(𝑐𝜌̂2). Thus, if we let 𝑥𝐿 < 1 < 𝑥𝑈 be the two roots, then, by Result 2, 

the lower confidence limit for the ratio of the variances, 𝜌2, is calculated as 𝑐𝜌̂2𝑥𝐿 , and the lower 

confidence limit for the ratio of the standard deviation is obtained as 𝜌̂√𝑐𝑥𝐿 . Similarly, the upper 

confidence limit for the ratio of the variances is 𝑐𝜌̂2𝑥𝑈 and the upper confidence limit for the 

ratio of the standard deviations is 𝜌̂√𝑐𝑥𝑈 . 

On the other hand, if the function 𝐻(𝑥) has more than two roots, then the inequality 𝐻(𝑟) ≤ 0 is 

satisfied if 𝑟 lies between consecutive roots where the function opens upward. Thus, the 

confidence set is a union of non-overlapping intervals. 
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