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This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

Variables Control Charts 

Overview 
Control charts are used to regularly monitor a process to determine whether it is in control. The 

Minitab Assistant includes two of the most widely used control charts for continuous data:  

 Xbar-R or Xbar-S charts. These charts are used when data are collected in subgroups. 

Minitab uses the pooled standard deviation to estimate within-subgroup standard 

deviation. The R chart provides an effective estimate of variation for subgroups of size up 

to approximately 10 (AIAG, 1995; Montgomery, 2001). For larger subgroup sizes, an S 

chart provides a better estimate of individual within-subgroup standard deviation. To 

follow Minitab past conventions and to be conservative, we recommend an S chart when 

the subgroup size is greater than 8. For subgroup sizes less than or equal to 8, the R and 

S chart provide similar results. 

 Individuals and Moving Range (I-MR) chart. This chart is used when there are no 

subgroups. Minitab uses an average moving range method of length 2 to estimate the 

standard deviation. 

The control limits for a control chart are typically established in the control phase of a Six Sigma 

project. A good control chart should be sensitive enough to quickly signal when a special cause 

exists. This sensitivity can be assessed by calculating the average number of subgroups needed 

to signal a special cause. Also, a good control chart rarely signals a “false alarm” when the 

process is in control. The false alarm rate can be assessed by calculating the percentage of 

subgroups that are deemed “out-of-control” when the process is in control. 

In general, control charts are optimized when each observation comes from a normal 

distribution, each observation is independent, and only common cause variability exists within 

subgroups. Therefore, the Assistant Report Card automatically performs the following data 

checks to evaluate these conditions: 

 Normality 

 Stability 
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 Amount of data 

 Correlated data 

In this paper, we investigate how a variables control chart behaves when these conditions vary, 

and we describe how we established a set of guidelines to evaluate requirements for these 

conditions. 
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Data checks 

Normality 
Control charts are not based on the assumption that the process data are normally distributed, 

but the criteria used in the tests for special causes are based on this assumption. If the data are 

severely skewed, or if the data fall too heavily at the ends of the distribution (“heavy-tailed”), the 

test results may not be accurate. For example, the chart may signal false alarms at a higher rate 

than expected. 

Objective 

We investigated the effect of nonnormal data on the Xbar chart and I chart. We wanted to 

determine how nonnormality affects the false alarm rate. Specifically, we wanted to determine 

whether nonnormal data significantly increases the rate that a chart indicates that points are out 

of control when the process is actually in control (false alarms). 

Method 

We performed simulations with 10,000 subgroups and different levels of nonnormality and 

recorded the percentage of false alarms. Simulations allow us to test various conditions to 

determine the effects of nonnormality. We chose the right-skewed distribution and symmetric 

distributions with heavy tails because these are common cases of nonnormal distributions in 

practice. See Appendix A for more details. 

Results 

XBAR CHART (SUBGROUP  

Our simulation showed that the false alarm rate does not increase significantly when the data 

are nonnormal if the subgroup size is 2 or more. Based on this result, we do not check normality 

for the Xbar-R or Xbar-S charts. Even when the data are highly skewed or extremely heavy tailed, 

the false alarm rate for test 1 and test 2 is less than 2%, which is not markedly higher than false 

alarm rate of 0.7% for the normal distribution.  

I CHART (SUBGROUP SIZE = 1) 

Our simulation showed that the I chart is sensitive to nonnormal data. When the data are 

nonnormal, the I chart produces a false alarm rate that is 4 to 5 times higher than when the data 

are normal. To address the sensitivity of the I chart to nonnormal data, the Assistant does the 

following: 

 Performs an Anderson-Darling test if the data could be highly nonnormal, as indicated 

by a greater than expected number of points outside the control limits (that is, 2 or more 

points and 2% or more of the points are outside of the control limits). 
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 If the Anderson-Darling test suggests that the data are nonnormal, the Assistant 

transforms the data using the optimal Box-Cox lambda. An Anderson-Darling test is 

performed on the transformed data. If the test fails to reject the null (that the data are 

normal), the Assistant suggests using the transformed data if the process naturally 

produces nonnormal data.  

The Box-Cox transformation is effective only for nonnormal data that are right-skewed. If the 

transformation is not effective for your nonnormal data, you may need to consider other 

options. In addition, because the Anderson-Darling test and Box-Cox transformation are 

affected by extreme observations, you should omit points with known special causes before you 

transform your data.  

When checking for normality, the Assistant Report Card for the I chart displays the following 

status indicators: 

Status Condition 

 

If < 2 points or < 2% of the points are outside the control limits on the I chart  

or 

The Anderson-Darling normality test for either the data or the Box-Cox transformed data fails to 
reject the null hypothesis (that the data are normal) at alpha = 0.01. 

 
If the above conditions do not hold. 

 

Stability 
For variables control charts, eight tests can be performed to evaluate the stability of the process. 

Using these tests simultaneously increases the sensitivity of the control chart. However, it is 

important to determine the purpose and added value of each test because the false alarm rate 

increases as more tests are added to the control chart. 

Objective 

We wanted to determine which of the eight tests for stability to include with the variables 

control charts in the Assistant. Our first goal was to identify the tests that significantly increase 

sensitivity to out-of-control conditions without significantly increasing the false alarm rate. Our 

second goal was to ensure the simplicity and practicality of the chart. Our research focused on 

the tests for the Xbar chart and the I chart. For the R, S, and MR charts, we use only Test 1, which 

signals when a point falls outside of the control limits. 

Method 

We performed simulations and reviewed the literature to evaluate how using a combination of 

tests for stability affects the sensitivity and the false alarm rate of the control charts. In addition, 
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we evaluated the prevalence of special causes associated with the test. For details on the 

methods used for each test, see the Results section below and Appendix B. 

Results 

We found that Tests 1, 2, and 7 were the most useful for evaluating the stability of the Xbar 

chart and the I chart: 

TEST 1: IDENTIFIES POINTS OUTSIDE OF THE CONTROL LIMITS 

Test 1 identifies points > 3 standard deviations from the center line. Test 1 is universally 

recognized as necessary for detecting out-of-control situations. It has a false alarm rate of only 

0.27%.   

TEST 2: IDENTIFIES SHIFTS IN THE MEANS 

Test 2 signals when 9 points in a row fall on the same side of the center line. We performed a 

simulation using 4 different means, set to multiples of the standard deviation, and determined 

the number of subgroups needed to detect a signal. We set the control limits based on the 

normal distribution. We found that adding Test 2 significantly increases the sensitivity of the 

chart to detect small shifts in the mean. When test 1 and test 2 are used together, significantly 

fewer subgroups are needed to detect a small shift in the mean than are needed when test 1 is 

used alone. Therefore, adding test 2 helps to detect common out-of-control situations and 

increases sensitivity enough to warrant a slight increase in the false alarm rate.  

TEST 7: IDENTIFIES CONTROL LIMITS THAT ARE TOO WIDE 

Test 7 signals when 12-15 points in a row fall within 1 standard deviation of the center line. Test 

7 is used only for the Xbar chart when the control limits are estimated from the data. When this 

test fails, the cause is usually a systemic source of variation (stratification) within a subgroup, 

which is often the result of not forming rational subgroups. Because forming rational subgroups 

is critical for ensuring that the control chart can accurately detect out-of-control situations, 

Minitab uses a modified test 7 when estimating control limits from the data. Test 7 signals a 

failure when the number of points in a row is between 12 and 15, depending on the number of 

subgroups: 

k = (Number of Subgroups) x 0.33 Points required 

k < 12 12 

  

k > 15 15 
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Tests not included in the Assistant 

TEST 3: K POINTS IN A ROW, ALL INCREASING OR ALL DECREASING 

Test 3 is designed to detect drifts in the process mean (Davis and Woodall, 1988). However, 

when test 3 is used in addition to test 1 and test 2, it does not significantly increase the 

sensitivity of the chart to detect drifts in the process mean. Because we already decided to use 

tests 1 and 2 based on our simulation results, including test 3 would not add any significant 

value to the chart. 

TEST 4: K POINTS IN A ROW, ALTERNATING UP AND DOWN 

Although this pattern can occur in practice, we recommend that you look for any unusual trends 

or patterns rather than test for one specific pattern. 

TEST 5: K OUT OF K=1 POINTS > 2 STANDARD DEVIATIONS FROM CENTER LINE 

To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify 

special cause situations that are common in practice. 

TEST 6: K OUT OF K+1 POINTS > 1 STANDARD DEVIATION FROM THE CENTER LINE 

To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify 

special cause situations that are common in practice. 

TEST 8: K POINTS IN A ROW > 1 STANDARD DEVIATION FROM CENTER LINE (EITHER SIDE) 

To ensure the simplicity of the chart, we excluded this test because it did not uniquely identify 

special cause situations that are common in practice. 

When checking stability, the Assistant Report Card displays the following status indicators: 

Status Condition 

 

No test failures on the chart for the mean (I chart or Xbar chart) and the chart for variation (MR, R, or 
S chart).  

The tests used for each chart are: 

 I chart: Test 1 and Test 2. 

 Xbar chart: Test 1, Test 2 and Test 7. Test 7 is performed only when the control limits are 
estimated from the data. 

 MR, R and S charts: Test 1. 

 

If above condition does not hold.  
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Amount of data 
If you do not have known values for the control limits, they must be estimated from the data. To 

obtain precise estimates of the limits, you must have enough data. If the amount of data is 

insufficient, the control limits may be far from the “true” limits due to sampling variability. To 

improve precision of the limits, you can increase the number of observations. 

Objective 

We investigated the number of observations that are needed to obtain precise control limits. 

Our objective was to determine the amount of data required to ensure that false alarms due to 

test 1 are no more than 1%, with 95% confidence. 

Method 

When the data are normally distributed and there is no error due to sampling variability, the 

percent of points above the upper control limit is 0.135%. To determine whether the number of 

observations is adequate, we followed the method outlined by Bischak (2007) to ensure that the 

false alarm rate due to points above the upper control limit is no more than 0.5% with 95% 

confidence. Due to the symmetry of the control limits, this method results in a total false alarm 

rate of 1% due to test 1. See Appendix C for more details. 

Results 

We determined that, for nearly all subgroup sizes, 100 total observations are adequate to obtain 

precise control limits. Although subgroup sizes of 1 and 2 required slightly more observations, 

the false alarm rate was still reasonably low (1.1%) with 100 observations. Therefore, for 

simplicity, we use the cutoff of 100 total observations for all subgroup sizes. 

Based on these results, the Assistant Report Card displays the following status indicators when 

checking the amount of data: 

Status Condition 

 

 

 

Number of observations < 100. 
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Correlated data 
Autocorrelation is a measure of the dependence between data points that are collected over 

time. Most process data exhibit at least a small degree of autocorrelation. If the autocorrelation 

is moderate or high, it can lead to incorrect test results. Typically, autocorrelated data exhibit 

positive autocorrelation, which can reduce the within-subgroup variation and lead to a higher 

false alarm rate. 

Objective 

We investigated the relationship between autocorrelation and the false alarm rate. Our objective 

was to determine the level of autocorrelation that generates an unacceptable false alarm rate. 

For simplicity, we considered autocorrelation for lag 1 because the autocorrelation for lag 1 is 

likely to be greater than autocorrelation for lags ≥ 2. 

Method 

Using a standard model for an autocorrelated process, we performed simulations with 𝜙 = 0.2, 

0.4, 0.5, 0.6, and 0.8 (𝜙 is the lag 1 autocorrelation) for three subgroup sizes (n = 1, 3, and 5). We 

used an initial set of 10,000 subgroups to establish the control limits. Then, we recorded the 

percentage of false alarms for an additional 2,500 subgroups. We performed 10,000 iterations 

and recorded the average percentage of false alarms. See Appendix D for more details. 

Results 

Our simulations showed that even moderate levels of autocorrelation significantly increase the 

false alarm rate. When the autocorrelation ≥ 0.4, the false alarm rate is very high and the control 

chart becomes meaningless. To address this, the Assistant performs an autocorrelation test if the 

data could be autocorrelated, as indicated by a greater than expected number of points outside 

the control limits (when 2 or more points and 2% or more of the points are outside of the 

control limits). In that case, the Assistant first tests whether the autocorrelation between 

successive data points (lag = 1) is significantly greater than 0.2. If the autocorrelation is 

significantly greater than 0.2, the Assistant then tests whether the autocorrelation between 

successive data points (lag = 1) is significantly greater than 0.4. 
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When checking for correlated data, the Assistant Report Card displays the following status 

indicators: 

Status Condition 

 

The number of points outside the control limits is not higher than expected; that is, < 2 points or < 
2% of the points are outside the control limits. 

The number of points outside the control limits is higher than expected, but a test of autocorrelation 
= 0.2 versus autocorrelation > 0.2 fails to reject the null hypothesis at alpha = 0.01. Therefore, there 
is not enough evidence to conclude that at least a moderate level of autocorrelation exists.  

 

If the above conditions do not hold. 

Note: If the null hypothesis that autocorrelation = 0.2 is rejected, we perform a follow-up test of 
autocorrelation = 0.4 versus autocorrelation > 0.4. If the autocorrelation = 0.4 test is rejected, we 
increase the severity of the caution message. 

 

For more details on the hypothesis test for autocorrelation, see Appendix D. 
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Appendix A: Normality 

Simulation A1: How nonnormality affects the false 
alarm rate 
To investigate how nonnormal data affect the performance of the I chart and Xbar chart, we 

performed a simulation to evaluate the false alarm rate associated with nonnormal data 

distributions. We focused our attention on right-skewed distributions and symmetric 

distributions with heavy tails because these are common nonnormal distributions in practice.  In 

particular, we examined 3 skewed distributions (chi-square with df=3, 5 and 10) and 2 heavy-

tailed distributions (t with df=3 and 5). 

We established the control limits using an initial set of 10,000 subgroups. We recorded the 

percentage of false alarms for an additional 2,500 subgroups. Then we performed 10,000 

iterations and calculated the average percentage of false alarms using test 1 and test 2 for 

special causes. The results are shown in Table 1. 

Table 1  % of false alarms for test 1, test 2 for the I chart (n=1), and Xbar chart (n=2, 3, 4 or 5) 

 Subgroup size 

Distribution n = 1 n = 2 n = 3 n = 4 n = 5 

Normal (0,1) 0.27, 0.39 0.27, 0.39 0.27, 0.39 0.27, 0.39 0.27, 0.39 

Chi (3) 2.06, 1.17 1.18, 0.79 0.98, 0.62 0.86, 0.57 0.77, 0.53 

Chi (5) 1.54, 0.83 0.93, 0.60 0.77, 0.53 0.67, 0.50 0.61, 0.47 

Chi (10) 1.05, 0.60 0.67, 0.50 0.56, 0.46 0.50, 0.44 0.45, 0.43 

t (3) 2.18, 0.39 1.30, 0.39 1.22, 0.39 1.16, 0.39 1.11, 0.39 

t (5) 1.43, 0.39 0.93, 0.39 0.80, 0.39 0.71, 0.39 0.66, 0.39 

 

Each cell in Table 1 indicates the calculated false alarm rate for test 1 and test 2, respectively. For 

example, the cell associated with the standard normal distribution (Normal (0, 1)) and the I chart 

(n=1) indicates that the I chart has a false alarm rate 0.27% for test 1 and 0.39% for test 2 when 

the data are normally distributed.  

By comparing the false alarm rates for the Xbar chart (n=2, 3, 4, 5) between the normal and 

nonnormal distributions, you can see that the false alarm rate does not increase significantly 

when the normality assumption is violated. Even with highly skewed distributions (chi-square, 3) 

and distributions with heavy tails (t ,3), the false alarm rate for test 1 and test 2 combined is less 

than 2.0% (compared to 0.7% for a normal distribution) for subgroup sizes as small as 2. Thus, 
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we conclude for practical purposes that the Xbar chart is robust to violations of the normality 

assumption. 

For the I chart, Table 1 shows a false alarm rate of approximately 3.2% for test 1 and test 2 

combined when the distribution is heavily skewed (chi-square, 3); this false alarm rate is nearly 5 

times higher than the expected false alarm rate when the data are normally distributed. The false 

alarm rate for test 1 and test 2 combined is 2.6% for distributions with heavy tails (t, 3), which is 

almost 4 times the expected rate when the data are normally distributed.   

Therefore, the data for the I-MR chart should first be tested for normality. If the null hypothesis 

of the Anderson-Darling goodness-of-fit test for normality is rejected (there is statistically 

significant evidence that the data do not follow a normal distribution), a Box-Cox transformation 

can be used to normalize the data. However, the Box-Cox transformation is effective only when 

the data are skewed to the right. For other cases of nonnormal data, further investigation is 

needed to determine the best course of action. Also, because the Anderson-Darling test and 

Box-Cox transformation are affected by extreme observations, points with known special causes 

should be omitted from the calculations before performing the analysis. 
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Appendix B: Stability 

Simulation B1: How adding test 2 to test 1 affects 
sensitivity 
Test 1 detects out-of-control points by signaling when a point is greater than 3 standard 

deviations from the center line. Test 2 detects shifts in the mean by signaling when 9 points in a 

row fall on the same side of the center line. 

To evaluate whether using test 2 with test 1 improves the sensitivity of the means charts (I chart 

and Xbar chart), we established control limits for a normal (0, SD) distribution. We shifted the 

mean of the distribution by a multiple of the standard deviation and then recorded the number 

of subgroups needed to detect a signal for each of 10,000 iterations. The results are shown in 

Table 2.  

Table 2  Average number of subgroups until a test 1 failure (Test 1), test 2 failure (Test 2), or test 

1 or test 2 failure (Test 1 or 2). The shift in mean equals a multiple of the standard deviation (SD) 

and the simulation was performed for subgroup sizes (n) = 1, 3 and 5. 

 n=1 n=3 n=5 

Shift Test 1 Test 2 Test 1 or 
2 

Test 1 Test 2 Test 1 or 
2 

Test 1 Test 2 Test 1 or 
2 

0.5 SD 154 84 57 60 31 22 33 19 14 

1 SD 44 24 17 10 11 7 4 10 4 

1.5 SD 15 13 9 3 9 3 1.6 9 1.6 

2 SD 6 10 5 1.5 9 1.5 1.1 9 1.1 

 

As seen in the results for the I chart (n=1), when both tests are used (Test 1 or 2 column) an 

average of 57 subgroups are needed to detect a 0.5 standard deviation shift in the mean, 

compared to an average of 154 subgroups needed to detect a 0.5 standard deviation shift when 

test 1 is used alone. Similarly, using both tests increases the sensitivity for the Xbar chart (n=3, 

n=5). For example, for a subgroup size of 3, an average of 22 subgroups are needed to detect a 

0.5 standard deviation shift when both test 1 and test 2 are used, whereas 60 subgroups are 

needed to detect a 0.5 standard deviation shift when test 1 is used alone. Therefore, using both 

tests significantly increases sensitivity to detect small shifts in the mean. As the size of the shift 

increases, adding test 2 does not significantly increase the sensitivity. 
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Simulation B2: How effectively does test 7 detect 
stratification (multiple sources of variability in 
subgroups)? 
Test 7 typically signals a failure when between 12 and 15 points in a row fall within 1 standard 

deviation of the center line. The Assistant uses a modified rule that adjusts the number of points 

required based on the number of subgroups in the data. We set k = (number of subgroups * 

0.33) and define the points in a row required for a test 7 failure as shown in Table 3.  

Table 3  Points in a row required for a failure on test 7 

k = (Number of Subgroups) x 0.33 Points required 

k < 12 12 

  

k > 15 15 

 

Using common scenarios for setting control limits, we performed a simulation to determine the 

likelihood that test 7 will signal a failure using the above criteria. Specifically, we wanted to 

evaluate the rule for detecting stratification during the phase when control limits are estimated 

from the data. 

We randomly chose m subgroups of size n from a normal distribution with a standard deviation 

(SD). Half of the points in each subgroup had a mean equal to 0 and the other half had a mean 

equal to the SD shift (0 SD, 1 SD, or 2 SD). We performed 10,000 iterations and recorded the 

percentage of charts that showed at least one test 7 signal, as shown in Table 4. 

Table 4  Percentage of charts that have at least one signal from Test 7 

Number of subgroups 

Subgroup size 

Test 

m = 50 

n = 2 

15 in a row 

m = 75 

n = 2 

15 in a row 

m = 25 

n = 4 

12 in a row 

m = 38 

n = 4 

13 in a row 

m = 25 

n = 6 

12 in a row 

Shift 

0 SD 5% 8% 7% 8% 7% 

1 SD 23% 33% 17% 20% 15% 

2 SD 83% 94% 56% 66% 50% 

 

As seen in the first Shift row of the table (shift = 0 SD), when there is no stratification, a relatively 

small percentage of charts have at least one test 7 failure. However, when there is stratification 

(shift = 1 SD or shift = 2 SD), a much higher percentage of charts—as many as 94%—have at 
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least one test 7 failure. In this way, test 7 can identify stratification in the phase when the control 

limits are estimated. 
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Appendix C: Amount of data 

Formula C1: Number of observations required based 
on a 95% CI for the upper control limit  
When the data are normally distributed and there is no error due to sampling variability, the 

percentage of observations above the upper control limit is 0.135% for a process in control. To 

determine whether there are enough observations to ensure that the false alarm rate stays 

reasonably low, we follow Bischak (2007) and calculate a 95% lower confidence limit for the 

upper control limit as follows: 

𝑈𝐶𝐿𝐿 = 𝜇 ̂ +  
ℎ

𝑤𝑝
 

where 

�̂� = estimate of center line 

h = 3 σ 

𝑤𝑝 = 1 −  
𝑧𝑝 √1 − 𝑐4

2

𝑐4 √
𝑛
𝑘

 

𝑐4  = unbiasing constant for an Xbar chart 

n = number of observations 

k = subgroup size 

𝑧𝑝 = inverse cdf evaluated at p = 0.95 for the Normal distribution with mean = 0 and 

standard deviation = 1 

We set 
ℎ

𝑤𝑝
 = 2.65 σ, which yields a false alarm rate of 0.5% above the upper control limit and 

solve for n. 

For the I chart, we estimate σ using an average moving range of length 2; therefore, we simply 

use the number of observations from the Xbar chart with subgroup size equal to 2 to determine 

the amount of data required. Based on these calculations, the number of observations required 

for various subgroup sizes are shown in Table 5. 

Table 5  Number of observations required for various subgroup sizes 

Subgroup 
size 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of 
observations 

114 114 84 72 70 66 63 64 63 60 66 60 65 56 60 
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Note  The number of observations should decrease as the subgroup size increases. However, 

exceptions to this rule appear in Table 8. These exceptions occur because the number of 

subgroups was rounded to the next integer before being multiplied by the number of 

observations in each subgroup, in order to calculate the total number of observations required. 

The results in Table 5 show that the total number of observations required is less than or equal 

to 100 for all subgroup sizes, except when the subgroup size is 1 or 2. However, even when the 

subgroup size is 1 or 2, the false alarm rate is only approximately 1.1% with 100 observations. 

Therefore, 100 observations is an effective cutoff value for all subgroup sizes. 

The above analysis assumes that each subgroup will have the same amount of common cause 

variation. In practice, data collected at different points in time may have different amounts of 

common cause variability. Therefore, you may want to sample the process at more points in 

time than required to increase the chances of having a representative estimate of the process 

variation. 
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Appendix D: Autocorrelation 

Simulation D1: How autocorrelation affects the false 
alarm rate 
We defined an autocorrelated process using the following model: 

𝑥𝑡 =  𝜇 +  𝜙 (𝑥𝑡−1 −  𝜇) +  𝜀𝑡 

where 

𝑥𝑡 = Observation at time t 

𝜇 = mean of the process 

𝜙 = correlation between two consecutive points 

𝜀𝑡  error term at time t; 𝜀 ~ Normal (0, 1) 

For simplicity, we considered only lag 1 autocorrelation because it is likely that lag 1 

autocorrelation will be greater than the autocorrelation for lags ≥ 2.  

Using the above model, we performed a simulation with 𝜙 = 0.2, 0.4, 0.5, 0.6, and 0.8 and with 

three subgroup sizes (n=1, 3, and 5). We used an initial set of 10,000 subgroups to establish the 

control limits and then recorded the percentage of false alarms for an additional 2,500 

subgroups. We performed 10,000 iterations and recorded the average percentage of false 

alarms using test 1 and test 2 for each combination of autocorrelation and subgroup size. The 

results are shown in Table 6 below. 

Table 6  Average percentage of false alarms for test 1, test 2 for a process with autocorrelation 

(𝜙) and subgroup size (n) 

 𝝓 

Subgroup size 0.2 0.4 0.5 0.6 0.8 

n = 1 0.73, 1.08 2.01, 2.99 3.38, 4.98 5.77, 8.34 17.94, 23.83 

n = 3 1.48, 0.57 5.35, 0.98 9.07, 1.39 14.59, 2.19 33.91, 7.91 

n = 5 1.49, 0.50 5.48, 0.68 9.40, 0.86 15.24, 1.18 35.52, 3.84 

 

Notice that as the value of 𝜙 increases, the false alarm rate increases. In fact, even moderate 

levels of autocorrelation (𝜙  = 0.4) lead to significant increases in the false alarm rate. When the 

autocorrelation is ≥ 0.4, the control chart shows such a large percentage of false alarms that the 

results of the chart are almost meaningless. 
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Formula D1: Test for autocorrelation 
To determine the level of autocorrelation 𝜙 in the data, we follow Bowerman (1979) and perform 

a test to evaluate the null hypothesis of 𝜙 = r versus the alternative hypothesis of 𝜙 > r using 

the following test statistic: 

𝑧 =
(�̂� −  𝑟)

𝑠𝑒 �̂�

 

where  

�̂� =
1

𝑚 �̂�
 ∑ (𝑥𝑖 −  𝜇)(𝑥𝑖+1 −  𝜇)

𝑚−1

𝑖=1

 

𝑚 = number of observations 

�̂� = sample variance 

𝑠𝑒 �̂� =  √𝑚 

When calculating the autocorrelation of data in Xbar charts, we do not include the dependence 

between the last point of a subgroup and the first point of the next subgroup because including 

these comparisons would lead to an underestimate of the autocorrelation. Following Bowerman 

(1979), we calculate the p-value based on a standard normal distribution. 
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