Stat > Power and Sample Size > General Full Factorial Design > Options
Significance level
Usually, a significance level (denoted as α or alpha) of 0.05 works well. A significance level of 0.05 indicates that the risk of concluding that a difference exists—when, actually, no difference exists—is 5%. It also indicates that the power of the test is 0.05 when there is no difference.
Choose a higher significance level, such as 0.10, if you are willing to increase the risk of concluding that the main effect of a factor is statistically significant—when, actually, no effect exists—so that you have greater power to detect an effect that is important. For example, a chemical engineer designs an experiment to study the effect of 5 factors on the yield of a substance. The engineer prefers to consider small or insignificant effects further rather than to remove a factor that could be important. Therefore, the engineer chooses a significance level of 0.10 to be more certain of detecting a factor that is important.
Choose a lower significance level, such as 0.01, to be more certain that you do not conclude that a difference is statistically significant when the difference is not. For example, a scientist at a pharmaceutical company designs an experiment to study the effect of 5 factors on a new drug. For further experimentation, the scientist prefers to study only factors that are important. The scientist chooses a significance level of 0.01 to be more certain not to conclude that an effect that does not exist is statistically significant.
By using this site you agree to the use of cookies for analytics and personalized content. Read our policy