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ABSTRACT 

A new graphical procedure for multiple comparisons of 𝑘 standard deviations is provided. As a 

test for homogeneity of variances, the new procedure has similar type I and type II error 

properties as the Brown and Forsythe (1974) version of the Levene (1960) test, 𝑊50. The 

graphical display associated with the multiple comparisons test, however, provides a useful 

visual tool for screening samples with different standard deviations. 

Index terms: Homogeneity of variances, Levene’s test, Brown-Forsythe test, Layard’s test, multiple 

comparisons 

1. Introduction 
The Brown and Forsythe (1974) modification of Levene’s test (1960), commonly referred to as 

test 𝑊50, is perhaps one of the most widely used procedures for testing the homogeneity 

(equality) of variances. In part, test  𝑊50 is popular because it is robust and is asymptotically 

distribution free. Compared to other tests of the homogeneity of variances, test  𝑊50 is also easy 

to calculate. (For a comparison of such tests, see Conover et al. (1981).) In addition, test 𝑊50 is 

easily accessible because it is available in many statistical software packages such as SAS, 

Minitab, R, and JMP.  

However, for some distributions, the power of test  𝑊50 can be very low, particularly in small 

samples. For example, Pan (1999) shows that for some distributions, including the normal 

distribution, test  𝑊50 may not have sufficient power to detect differences between two standard 
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deviations, regardless of the magnitude of the differences. It is not clear from Pan’s analysis 

whether the same limitation would apply to multi-sample designs. One might expect that this 

limitation would not apply to designs with more than two samples, simply because such designs 

are likely to include more data than two-sample designs.  Test 𝑊50 is known to have good large-

sample properties (Miller, 1968; Brown and Forsythe, 1974; Conover et al., 1981). 

It has become common practice to follow a significant test  𝑊50 with a simultaneous pairwise 

comparison procedure based on a Bonferroni multiplicity correction. As pointed out by Pan 

(1999), however, such an approach is likely to fail or to yield misleading results because of the 

low power of test  𝑊50 in two-sample designs. Using the Bonferroni correction worsens the 

problem because it is conservative, particularly when the number of pairwise comparisons is 

large. In contrast, many effective multiple comparison procedures are available for comparing 

means following a one-way ANOVA. For examples, see Tukey (1953), Hochberg et al. (1982), and 

Stoline (1981). An analogous post-hoc analysis for comparisons among sample variances would 

be useful. 

In this paper, we propose a graphical method for comparing the variances (or standard 

deviations) of multiple samples. The analysis is based on “uncertainty intervals” for variances 

that are similar to the uncertainty intervals described by Hochberg et al. (1982) for means. First, 

a multiple pairwise comparisons procedure is based on the Bonett’s (2006) modified version of 

Layard’s (1973) test for the equality of variances for two-sample designs. The multiplicity 

correction used in the pairwise comparisons is based on a large-sample generalization of the 

Tukey-Kramer method (Tukey, 1953; Kramer, 1956), proposed by Nakayama (2009). The 

uncertainty intervals, which we refer to as “multiple comparison intervals” or “MC intervals”, are 

derived from the pairwise comparison procedure using the best approximate procedure 

described by Hochberg et al. (1982). The resulting MC test rejects the null hypothesis if, and only 

if, at least one pair of MC intervals does not overlap. Non-overlapping MC intervals identify the 

samples that have significantly different variances (or standard deviations). 

We perform simulation studies to assess the small-sample properties of the MC test. For 

comparison, we also include test 𝑊50 in the simulation studies. 

2. Graphical Multiple Comparisons 
Procedure 

Let 𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
, … , 𝑌𝑘1, … , 𝑌𝑘𝑛𝑘

 be 𝑘 independent samples, each sample being independent and 

identically distributed with mean 𝐸(𝑌𝑖𝑙) = 𝜇𝑖 and variance Var(𝑌𝑖𝑙) = 𝜎𝑖
2 > 0. In addition, suppose 

that the samples originate from populations with a common kurtosis 𝛾 = 𝐸(𝑌 − 𝜇)4 𝜎4⁄ < ∞. 
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Also, let �̅�𝑖 and 𝑆𝑖 be the mean and the standard deviation of sample 𝑖, respectively. Let 𝑚𝑖 be 

the trimmed mean of sample 𝑖 with trim proportion 1/[2√𝑛𝑖 − 4]  and let 𝛾𝑖𝑗 be a pooled 

kurtosis estimator of samples (𝑖, 𝑗) given as 

γ̂ij = (ni + nj)
∑ (Yil − mi)

4ni
l=1 + ∑ (Yjl − mj)

4nj

l=1

[∑ (Yil − Y̅i)
2ni

l=1 + ∑ (Yjl − Y̅j)
2nj

l=1 ]
2 

 

= (ni + nj)
∑ (Yil − mi)

4ni
l=1 + ∑ (Yjl − mj)

4nj

l=1

[(ni − 1)Si
2 + (nj − 1)Sj

2]
2  

Note that 𝛾𝑖𝑗 is asymptotically equivalent to Layard’s (1973) pooled kurtosis estimator where the 

sample mean �̅�𝑖 has been replaced with the trimmed mean 𝑚𝑖. Thus, 𝛾𝑖𝑗 is a consistent estimator 

of the unknown common kurtosis 𝛾, so long as the population variances are equal. Bonett 

(2006) proposes this estimator in place of Layard’s pooled kurtosis estimator to improve the 

small-sample performance of Layard’s test in two-sample problems. Throughout, we refer to 

Bonett’s (2006) modified version of Layard’s test simply as Bonett’s test. 

Suppose that there are more than two independent groups or samples to compare (𝑘 > 2). The 

graphical multiple comparison procedure we propose is derived from the multiple pairwise 

comparisons that are based on the Bonett’s test. An alternative approach is to base the pairwise 

comparisons on test  𝑊50. In two-sample designs, however, the power performance of test  𝑊50 

is problematic for some distributions including the normal distribution (Pan, 1999). Moreover, 

Banga and Fox (2013) show that confidence intervals for the ratio of variances that are based on 

Bonett’s test are generally superior to those based on test  𝑊50. 

Given any pair (𝑖, 𝑗) of samples, a two-sided Bonett’s test with significance level 𝛼′ rejects the 

null hypothesis of the equality of variances if, and only if,  

|ln(𝑐𝑖𝑆𝑖
2) − ln(𝑐𝑗𝑆𝑗

2)| > 𝑧𝛼′/2√
𝛾𝑖𝑗 − 𝑘𝑖

𝑛𝑖 − 1
+

𝛾𝑖𝑗 − 𝑘𝑗

𝑛𝑗 − 1
 

where 𝑧𝛼′/2 is the 𝛼′/2 × 100th upper percentile point of the standard normal distribution, 

𝑘𝑖 =
𝑛𝑖 − 3

𝑛𝑖
 , 𝑘𝑗 =

𝑛𝑗 − 3

𝑛𝑗
 , 𝑐𝑖 =

𝑛𝑖

𝑛𝑖 − 𝑧𝛼/2
, 𝑐𝑗 =

𝑛𝑗

𝑛𝑗 − 𝑧𝛼/2
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Since there are multiple pairwise comparisons, exactly  𝑘(𝑘 − 1)/2 comparisons, a multiplicity 

adjustment is required. For example, if a target overall or family-wise significance level, 𝛼, is 

given, then one common approach, known as the Bonferroni correction, is to choose the 

significance level of each of the 𝑘(𝑘 − 1)/2 pairwise comparisons, 𝛼′ = 2𝛼/(𝑘(𝑘 − 1)).The 

Bonferroni correction, however, is well known to yield increasingly conservative pairwise 

comparison procedures as the number of samples to compare increases. An alternative and 

better approach is proposed by Nakayama (2009) and is based on a large-sample approximation 

of the Tukey-Kramer method (Tukey, 1953; Kramer, 1956). Specifically, the overall multiple 

pairwise comparisons test is significant if, and only if, the following is true for some pair (𝑖, 𝑗) of 

samples: 

|ln(𝑐𝑖𝑆𝑖
2) − ln(𝑐𝑗𝑆𝑗

2)| >
𝑞𝑘,𝛼

√2
√

𝛾𝑖𝑗 − 𝑘𝑖

𝑛𝑖 − 1
+

𝛾𝑖𝑗 − 𝑘𝑗

𝑛𝑗 − 1
 

where 𝑞𝛼,𝑘 is the upper 𝛼 point of the range of 𝑘 independent and identically distributed 

standard normal random variables. That is, 𝑞𝛼,𝑘 satisfies 

Pr ( max
1≤𝑖<𝑗≤𝑘

|𝑍𝑖 − 𝑍𝑗| ≤ 𝑞𝛼,𝑘) = 1 − 𝛼 

where 𝑍1, … , 𝑍𝑘 are independent and identically distributed standard normal random variables. 

Barnard (1978) provides a simple numerical algorithm based on a 16-point Gaussian quadrature 

for computing the distribution function of the normal range. 

As suggested by Hochberg et al. (1982), a graphical multiple comparisons procedure that 

approximates the multiple pairwise comparison procedure described above would reject the null 

hypothesis if, and only if, 

|ln(𝑐𝑖𝑆𝑖
2) − ln(𝑐𝑗𝑆𝑗

2)| > 𝑞𝛼,𝑘(𝑉𝑖 + 𝑉𝑗)/√2 

where the 𝑉𝑖 are selected to minimize the following: 

∑ ∑(𝑉𝑖 + 𝑉𝑗 − 𝑏𝑖𝑗)
2

𝑖≠𝑗

 

where 

𝑏𝑖𝑗 = √
𝛾𝑖𝑗 − 𝑘𝑖

𝑛𝑖 − 1
+

𝛾𝑖𝑗 − 𝑘𝑗

𝑛𝑗 − 1
 

The solution to this problem, as illustrated in Hochberg et al. (1982), is to choose 

𝑉𝑖 =
(𝑘 − 1) ∑ 𝑏𝑖𝑗𝑗≠𝑖 − ∑ ∑ 𝑏𝑗𝑙1≤𝑗<𝑙≤𝑘

(𝑘 − 1)(𝑘 − 2)
 

It follows that a test of homogeneity of variances based on this approximate procedure rejects 

the null hypothesis if, and only if, at least one pair of the intervals given below do not overlap: 

[𝑆𝑖√𝑐iexp(−𝑞𝛼,𝑘𝑉𝑖/√2 ) , 𝑆𝑖√𝑐𝑖 exp(𝑞𝛼,𝑘𝑉𝑖/√2) ] , 𝑖 = 1, … , 𝑘 
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The graphical MC procedure consists of displaying these intervals on a graph to visually identify 

the samples with non-overlapping intervals. In addition, the p-value of the overall test of the 

homogeneity of variance (or standard deviation) can be determined.  We provide detailed 

algorithms for calculating the p-value in the next section. But, first, we point out some simple 

facts about the MC procedure. 

REMARK 

1. The pooled kurtosis estimator, 𝛾𝑖𝑗, based on the pair (𝑖, 𝑗) of samples, could have been 

replaced with the overall pooled kurtosis estimator, based on all the 𝑘 samples. Although 

this approach somewhat simplifies the computations, simulation results that are not 

shown here, indicate that using 𝛾𝑖𝑗 yields better results. 

2. The interval corresponding to sample 𝑖 is not a confidence interval for the standard 

deviation of the sample parent population. Hochberg et al. (1982) refer to such an 

interval as an “uncertainty interval”. We refer to it as a “multiple comparison interval” or 

an “MC interval”. MC intervals are useful only for comparing the standard deviations or 

variances for multi-sample designs. 

3. The MC intervals that are described in this paper can be used only to compare more than 

two standard deviations. When there are only two samples, comparison intervals can be 

constructed, but they convey the same information that is provided by the test results. It 

is much more informative to construct a confidence interval for the ratio of the standard 

deviations, such as that described by Banga and Fox (2013) and provided with Minitab's 

Two-Sample Variance command.  

3. P-value of the Graphical Multiple 
Comparisons Method 

Before we describe the algorithm for calculating the p-value of the graphical (MC) method, we 

first derive the p-value associated with Bonett’s (2006) modification of Layard’s test in two-

sample designs. We then show how to apply the two-sample design results to the multiple 

comparisons procedure.  

3.1 P-value in two-sample designs 
As mentioned earlier, Bonett’s (2006) adjustment of Layard’s test in two-sample designs rejects 

the null hypothesis of homogeneity of variances if, and only if,  

|ln(𝑐1𝑆1
2) − ln(𝑐2𝑆2

2)| > 𝑧𝛼/2𝑠𝑒 

or equivalently 

|ln(𝑐𝛼/2 𝑆1
2 /𝑆2

2)| > 𝑧𝛼/2𝑠𝑒 
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where 

𝑠𝑒 = √
𝛾12 − 𝑘1

𝑛1 − 1
+

𝛾12 − 𝑘2

𝑛2 − 1
 

𝑐𝛼/2 =
𝑐1

𝑐2
=

𝑛1

𝑛1 − 𝑧𝛼/2

𝑛2 − 𝑧𝛼/2

𝑛2
 

Bonett introduced the constant 𝑐𝛼/2 as a small-sample adjustment to mitigate the effect of 

unequal tail-error probabilities in small-sample unbalanced designs. The effect of the constant, 

however, is negligible in large-sample unbalanced designs, and the constant has no effect in 

balanced designs. 

It follows that, if the design is balanced, then the p-value of the two-sided test for the 

homogeneity of variances is simply calculated as 

𝑃 = 2 Pr(𝑍 > |𝑍0 |) 

where 

𝑍0 =
ln(𝑆1

2) − ln(𝑆2
2)

𝑠𝑒
 

If the design is unbalanced, then 𝑃 = 2 min(𝛼𝐿 , 𝛼𝑈), where 𝛼𝐿 is the smallest solution for 𝛼 in the 

equation,  

exp[ln(𝑐𝛼𝑆1
2/𝑆2

2) − 𝑧𝛼𝑠𝑒] = 1  (1) 

and 𝛼𝑈 is the smallest solution for 𝛼 in the equation, 

exp[ln(𝑐𝛼𝑆1
2/𝑆2

2) + 𝑧𝛼𝑠𝑒] = 1  (2) 

Algorithms for finding 𝛼𝐿 and 𝛼𝑈 are given below. The mathematical details of the algorithms 

are deferred to the Appendix section. 

Let  

𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) = ln
𝑛1

𝑛2
+ ln

𝑛2 − 𝑧

𝑛1 − 𝑧
− 𝑧 𝑠𝑒 + ln

𝑆1
2

𝑆2
2 , 𝑧 < min(𝑛1, 𝑛2) 

Also let 

𝑧𝑚 =
𝑛1 + 𝑛2 − √(𝑛1 − 𝑛2)(𝑛1 − 𝑛2 −

4
𝑠𝑒)

2
 

The solutions 𝛼𝐿 and 𝛼𝑈 are calculated in the following steps: 

Case 1: 𝑛1 < 𝑛2 

 Calculate 𝑧𝑚 as given in the above result and evaluate 𝐿(𝑧𝑚, 𝑛1, 𝑛2, 𝑆1, 𝑆2). 

 If  𝐿(𝑧𝑚) ≤ 0, then find the root,  𝑧𝐿, of 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) in the interval, (−∞, 𝑧𝑚] and 

calculate 𝛼𝐿 = Pr (𝑍 > 𝑧𝐿). 
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 If  𝐿(𝑧𝑚) > 0, then the function 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) has no root. Set 𝛼𝐿 = 0.0. 

Case 2: 𝑛1 > 𝑛2 

 Calculate 𝐿(0, 𝑛1, 𝑛2, 𝑆1, 𝑆2) = ln 𝑆1
2/𝑆2

2. 

 If 𝐿(0, 𝑛1, 𝑛2, 𝑆1, 𝑆2) ≥ 0 then find the root, 𝑧𝑜, of 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) in the interval [0, 𝑛2), 

otherwise find the root 𝑧𝐿 in the interval (−∞, 0). 

 Calculate 𝛼𝐿 = Pr (𝑍 > 𝑧𝐿). 

To calculate 𝛼𝑈, we simply apply the above steps using the function, 𝐿(𝑧, 𝑛2, 𝑛1, 𝑆2, 𝑆1), instead of 

the function, 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2). 

3.2 P-value of the Graphical Multiple comparisons 
Assuming that there are 𝑘 (𝑘 > 2) samples in the design, we let 𝑃𝑖𝑗 be the p-value of the test 

associated with any pair (𝑖, 𝑗) of samples. We recall that the multiple comparisons test rejects the 

null hypothesis of the homogeneity of variances if, and only if, at least one pair of the 𝑘 

comparison intervals does not overlap. It follows that the overall p-value associated with the 

multiple comparisons procedure is   

𝑃 = min{ 𝑃𝑖𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘} 

To calculate 𝑃𝑖𝑗 we perform the algorithm of the two-sample designs using   

𝑠𝑒 = 𝑉𝑖 + 𝑉𝑗 

where 𝑉𝑖 is as defined as before.  

If  𝑛𝑖 ≠ 𝑛𝑗, then 

𝑃𝑖𝑗 = min(𝛼𝐿 , 𝛼𝑈) 

where 𝛼𝐿 = Pr (𝑄 > 𝑧𝐿√2) , 𝛼𝑈 = Pr (𝑄 > 𝑧𝑈√2), 𝑧𝐿 is the smallest root of the function, 

𝐿(𝑧, 𝑛𝑖, 𝑛𝑗, 𝑆𝑖, 𝑆𝑗), 𝑧𝑈 is the smallest root of the function, 𝐿(𝑧, 𝑛𝑗, 𝑛𝑖, 𝑆𝑗, 𝑆𝑖), and 𝑄 is a random 

variable as defined previously. The quantities 𝑧𝐿 and 𝑧𝑈 are found by applying the two-sample 

design algorithm described earlier to the pair (𝑖, 𝑗) of samples. 

If 𝑛𝑖 = 𝑛𝑗 then 𝑃𝑖𝑗 = Pr (𝑄 > |𝑧𝑜|√2), where 

𝑧𝑜 =
ln 𝑆𝑖

2 − ln 𝑆𝑗
2

𝑉𝑖 + 𝑉𝑗
 

4. Simulation Study and Results 
Two major simulation studies are conducted to investigate the small-sample performance of the 

MC test as an overall test for the homogeneity of variances. All simulations were conducted 

using Version 8 of the Mathematica software package. 
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Study 1 
The first study is designed to evaluate and compare the type I error properties of the MC test 

and test 𝑊50. We compare the performance of the two tests with samples generated from 

various distributions in three different designs: a 3-sample design, a 4-sample design, and a 6-

sample design. In each design, the sample sizes are varied from 10 to 50 increments of 10. 

Samples are drawn from the following parent distributions: 

 the normal distribution 

 symmetric light-tailed distributions, represented by the uniform distribution and a Beta 

distribution with parameters of (3, 3) 

 symmetric heavy-tailed distributions, represented by a t-distribution with 5 degrees of 

freedom (𝑡(5)) and the Laplace distribution 

 skewed and heavy-tailed distributions, represented by the exponential distribution, a chi-

square distribution with 1 degree of freedom (𝜒2(1)), and a chi-square distribution with 

5 degrees of freedom (𝜒2(5)) 

 a contaminated normal distribution (CN(0.9, 3)) for which 90% of observations are drawn 

from the standard normal distribution and the remaining 10% are drawn from a normal 

distribution with a mean of 0 and a standard deviation of 3. 

Each simulation consists of 10,000 sampling replicates. The targeted nominal 𝛼 level is 0.05. The 

simulation error is approximately 0.002. The simulated significance levels for each test are 

reported in Table 1. 

Table 1 Comparison of Simulated Significance Levels (𝛼 = 0.05) 

Description Distribution 
[Kurtosis]  

𝒏𝒊 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟔 

MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 

Normal Normal  
[3.0] 

10 .038 .033 .038 .031 .036 .029 

20 .039 .038 .040 .038 .041 .033 

30 .043 .041 .044 .038 .046 .039 

40 .046 .043 .046 .041 .048 .041 

50 .046 .046 .046 .044 .052 .047 

Symmetric with Light Tails Uniform 
[1.8] 

10 .029 .029 .025 .024 .023 .020 

20 .028 .026 .030 .026 .028 .023 

30 .037 .035 .034 .032 .034 .030 

40 .038 .037 .037 .037 .035 .033 

50 .041 .041 .036 .036 .036 .036 
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Description Distribution 
[Kurtosis]  

𝒏𝒊 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟔 

MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 

Beta(3, 3) 

[2.5] 

10 .031 .032 .031 .029 .031 .025 

20 .035 .031 .036 .027 .037 .026 

30 .041 .035 .037 .034 .037 .032 

40 .040 .036 .039 .035 .040 .033 

50 .044 .039 .044 .037 .044 .035 

Symmetric with Heavy Tails Laplace 

[6.0] 

10 .056 .038 .063 .041 .071 .039 

20 .054 .044 .058 .043 .059 .041 

30 .051 .042 .053 .043 .052 .044 

40 .048 .045 .048 .045 .048 .046 

50 .045 .045 .051 .046 .049 .047 

𝑡(5)  

[9.0] 

10 .042 .032 .044 .031 .042 .031 

20 .043 .039 .045 .038 .045 .040 

30 .039 .040 .040 .040 .041 .040 

40 .041 .042 .040 .041 .039 .038 

50 .040 .050 .039 .046 .038 .046 

Skewed with Heavy Tails 𝜒2(5)  

[5.4] 

10 .040 .039 .046 .040 .048 .039 

20 .040 .043 .040 .040 .042 .039 

30 .039 .047 .042 .044 .043 .042 

40 .040 .046 .041 .044 .039 .042 

50 .037 .047 .038 .047 .040 .048 

Exponential 

[9.0] 

10 .063 .051 .073 .049 .076 .048 

20 .051 .049 .053 .048 .057 .046 

30 .042 .048 .046 .051 .049 .049 

40 .034 .050 .038 .046 .037 .049 

50 .033 .045 .037 .047 .038 .046 

𝜒2(1)  

[15.0] 

10 .084 .048 .098 .050 .118 .050 

20 .053 .046 .060 .047 .068 .046 
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Description Distribution 
[Kurtosis]  

𝒏𝒊 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟔 

MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 

30 .041 .041 .045 .045 .050 .047 

40 .044 .049 .046 .047 .045 .047 

50 .038 .050 .037 .049 .040 .049 

Contaminated Normal CN(0.9, 3) 

[8.3] 

10 .020 .016 .018 .012 .016 .010 

20 .014 .015 .012 .013 .008 .007 

30 .012 .014 .010 .011 .007 .008 

40 .009 .017 .009 .014 .006 .008 

50 .009 .016 .007 .012 .006 .009 

The results show that both tests perform well for most distributions. Most of the simulated 

significance levels are close to the target of 0.05. However, the simulated significance levels for 

both tests tend to be conservative (lower than 0.05) when small samples are drawn from normal 

and symmetric light-tailed distributions. For these distributions, the simulated significance levels 

for the MC test are closer to the target significance level than are those for test 𝑊50. 

When small samples are drawn from heavy-tailed distributions, test 𝑊50 tends to be 

conservative and the MC test tends to be liberal. The MC test is even more liberal when small 

samples are drawn from extremely skewed distributions. For example, when samples of size 10 

are drawn from a chi-square distribution with 1 degree of freedom, the simulated significance 

levels for the MC test are 0.084, 0.098, and 0.118 for the 3-, 4-, and 6-sample designs, 

respectively. 

Both tests are influenced by outliers. Significance levels for the contaminated normal 

distribution are extremely conservative even when sample sizes are as large as 50. 

Study 2 
The second study evaluates and compares the type II error properties (power) of the two 

procedures in a 4-sample design. We use the same samples for this study as those used for the 

samples of size 20 and 𝑘 = 4 condition in Study 1. The observations are scaled by a factor of 1, 

2, 3, or 4. For example, in the condition denoted as 1:1:4:4, the observations for samples 1 and 2 

are the same as those used in Study 1. The observations in samples 3 and 4 are scaled by a 

factor of 4.  

We include the condition 1:1:1:1 for comparison. Notice that the results for this condition are 

the same as those reported in Study 1 for samples of size 20 and 𝑘 = 4. We choose samples of 

size 20 because the results of Study 1 suggest that, for both tests, samples of size 20 yield 

achieved significance levels that are near the target level for most distributions.  
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The simulated power levels in these experiments are calculated as the proportion of sample 

replicates that lead to rejections of the null hypothesis of homogeneity of variances.  

The results are reported in Table 2. 

Table 2 Comparison of Simulated Power Levels (𝛼 = 0.05) 

Description Distribution 

Standard deviation ratio  

1:1:1:1  1:1:2:2 1:2:3:4 1:1:4:4 

MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 MC 𝑾𝟓𝟎 

 Normal .040 .038 .846 .853 .998 .994 1.000 1.000 

Symmetric 
Light Tailed 

Uniform .030 .026 .985 .962 1.000 .999 1.000 1.000 

Beta(3, 3) .036 .027 .938 .916 1.000 .999 1.000 1.000 

Symmetric 
Heavy Tailed 

Laplace .058 .043 .597 .629 .931 .921 .996 .998 

𝑡(5)  .045 .038 .657 .703 .952 .949 .997 .998 

Skewed  
Heavy Tailed 

𝜒2(5)  .040  .040 .625 .704 .949 .949 .996 .999 

Exponential .053 .048 .431 .507 .804 .779 .963 .978 

𝜒2(1)  .060 .047 .298 .291 .602 .504 .838 .824 

Contaminated CN(0.9, 3) .012 .013 .499 .612 .889 .917 .989 .998 

The results suggest that the type II error properties (power) of the MC test and test 𝑊50 are 

similar. In general, the simulated power levels achieved with both tests are of the same order of 

magnitude. In only one case does the power for the two tests differ by more than 0.1. 

The simulated power levels for the MC test are slightly better than those of test 𝑊50 when 

samples are drawn from symmetric distributions with light to moderated tails. On the other 

hand, test 𝑊50 appears to be slightly more powerful than the MC test when samples are drawn 

from distributions with heavy tails. 
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5. Example 
In this section, we apply the graphical MC procedure and test 𝑊50 to a data set obtained from 

Ott et al. (2010), page 397. The data is described as follows: 

A casting company has several ovens in which they heat the raw materials prior to 

pouring them into a wax mold. It is very important that these metals be heated to a 

precise temperature with very little variation. Three ovens are selected at random 

and their temperatures are recorded (℃) very accurately on 10 successive heats. 

The collected data are as follows: 

Oven 1 1670.87 1670.88 1671.51 1672.01 1669.63 1670.95 1668.70 1671.86 1669.12 1672.52 

Oven 2 1669.16 1669.60 1669.76 1669.18 1671.92 1669.69 1669.45 1669.35 1671.89 1673.45 

Oven 3 1673.08 1672.75 1675.14 1674.94 1671.33 1660.38 1679.94 1660.51 1668.78 1664.32 

Figure 1 shows boxplots of the temperatures for each oven. The boxplots suggest that there are 

no outliers in the recorded temperatures and that the temperature variability for Oven 3 is 

different from that of Oven 1 or Oven 2. 

 

Figure 1 Boxplots of oven temperature (℃) 

Oven 3

Oven 2

Oven 1

16801675167016651660

Data

Boxplot of Oven 1, Oven 2, Oven 3
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Figure 2 shows the MC intervals for the same data, as well as the results of the overall MC test 

and test 𝑊50, which is referred to in the legend as Levene’s Test. The significant p-values for 

both tests indicate that the variability in temperatures is different among the three ovens. The 

non-overlapping MC intervals confirm that the variability for Oven 3 is different from Oven 2 or 

Oven 1. The MC intervals are (0.896, 2.378), (1.072, 2.760), and (4.366, 12.787) for Ovens 1, 2, 

and 3, respectively. 

 

Figure 2 MC intervals and p-values for the MC test and test 𝑊50 (Levene's Test) 

6. Conclusion 
Overall, the simulation results show that, for designs with multiple small samples, the 

performance of the MC test is similar to that of test 𝑊50. The MC test is slightly more suited to 

symmetric or nearly symmetric distributions with light to moderate tails, while test 𝑊50 might be 

preferred when data are drawn from highly skewed distributions and distributions with heavy 

tails. One clear advantage of the MC procedure is that it provides a powerful visual tool for 

screening samples with different standard deviations or variances when the overall test for the 

homogeneity of standard deviations is significant. The graphical MC procedure is available in 

Minitab, release 17. 

Oven 3

Oven 2

Oven 1

14121086420

P-Value 0.001

P-Value 0.002

Multiple Comparisons

Levene’s Test

Test for Equal Variances: Oven 1, Oven 2, Oven 3
Multiple comparison intervals for the standard deviation, α = 0.05

If intervals do not overlap, the corresponding stdevs are significantly different.
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7. Appendix 
Bonett’s (2006) adjustment of Layard’s test in two-sample designs rejects the null hypothesis of 

homogeneity of variances if, and only if, 

|ln(𝑐1𝑆1
2) − ln(𝑐2𝑆2

2)| > 𝑧𝛼/2𝑠𝑒 

or equivalently 

|ln(𝑐𝛼/2 𝑆1
2 /𝑆2

2)| > 𝑧𝛼/2𝑠𝑒 

where  

𝑠𝑒 = √
𝛾12 − 𝑘1

𝑛1 − 1
+

𝛾12 − 𝑘2

𝑛2 − 1
 

𝑐𝛼/2 =
𝑐1

𝑐2
=

𝑛1

𝑛1 − 𝑧𝛼/2

𝑛2 − 𝑧𝛼/2

𝑛2
 

Thus, if the design is balanced, then 𝑐𝛼/2 = 1, so that the p-value of the test is simply  

𝑃 = 2 Pr(𝑍 > |𝑍0 |) 

where 

𝑍0 =
ln(𝑆1

2) − ln(𝑆2
2)

𝑠𝑒
 

If the design is unbalanced, then 𝑃 = 2 min(𝛼𝐿 , 𝛼𝑈) where 

𝛼𝐿is the smallest solution for 𝛼 in the equation  

exp[ln(𝑐𝛼𝑆1
2/𝑆2

2) − 𝑧𝛼𝑠𝑒] = 1  (1) 

and 𝛼𝑈 is the smallest solution 𝛼 of the equation 

exp[ln(𝑐𝛼𝑆1
2/𝑆2

2) + 𝑧𝛼𝑠𝑒] = 1  (2) 

The approach for solving these equations for 𝛼 is to first solve the equations for 𝑧 ≡ 𝑧𝛼 and then 

obtain 𝛼 = Pr(𝑍 > 𝑧) where the random variable 𝑍 has the standard normal distribution. Before 

we describe how to solve these equations, we note that equation (1) can be re-expressed as the 

equation 𝐿(𝑧) = 0 where 

𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) = ln
𝑛1

𝑛2
+ ln

𝑛2 − 𝑧

𝑛1 − 𝑧
− 𝑧 𝑠𝑒 + ln

𝑆1
2

𝑆2
2 , 𝑧 < min(𝑛1, 𝑛2) 

Similarly, equation (2) is equivalent to the equation 𝑈(𝑧) = 0, where 

𝑈(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) = ln
𝑛1

𝑛2
+ ln

𝑛2 − 𝑧

𝑛1 − 𝑧
+ 𝑧 𝑠𝑒 + ln

𝑆1
2

𝑆2
2 , 𝑧 < min(𝑛1, 𝑛2) 

We note that 𝐿(𝑧, 𝑛2, 𝑛1, 𝑆2, 𝑆1) = −𝑈(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2). Consequently, the roots of only one of the 

two functions must be found.  
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The algorithm for solving equation (1), or (2), is derived from the following result: 

Result 
Let 𝑛1, 𝑛2, 𝑆1 and 𝑆2 be given and fixed. For unbalanced designs, the function, 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2), 

has, at most, two roots. 

4. If 𝑛1 < 𝑛2 then 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) is convex: It satisfies 𝐿(−∞, 𝑛1, 𝑛2, 𝑆1, 𝑆2) =

𝐿(𝑛1, 𝑛1, 𝑛2, 𝑆1, 𝑆2) = +∞, and reaches its minimum at  

𝑧𝑚 =
𝑛1 + 𝑛2 − √(𝑛1 − 𝑛2)(𝑛1 − 𝑛2 −

4
𝑠𝑒)

2
 

Thus, if 𝐿(𝑧𝑚, 𝑛1, 𝑛2, 𝑆1, 𝑆2) ≤ 0, then there are two roots: One in the interval (−∞, 𝑧𝑚] and 

the other in the interval [𝑧𝑚, 𝑛1). On the other hand, if 𝐿(𝑧𝑚, 𝑛1, 𝑛2, 𝑆1, 𝑆2) > 0, then the 

function 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) has no root. 

5. If 𝑛1 > 𝑛2, then 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2) decreases monotonically from +∞ to −∞ and therefore 

has a unique root. If 𝐿(0, 𝑛1, 𝑛2, 𝑆1, 𝑆2) = 𝑙𝑛 𝑆1
2/𝑆2

2 ≥ 0, then the root is in the interval 

[0, 𝑛2); otherwise it lies in the interval (−∞, 0). 

Proof 
In the following, we let 𝐿(𝑧) ≡ 𝐿(𝑧, 𝑛1, 𝑛2, 𝑆1, 𝑆2). 

First, we want to prove that, if 𝑛1 < 𝑛2 then 𝐿(𝑧) is convex and reaches its minimum at  

𝑧𝑚 =
𝑛1 + 𝑛2 − √(𝑛1 − 𝑛2)(𝑛1 − 𝑛2 −

4
𝑠𝑒)

2
 

As previously defined 

𝐿(𝑧) = ln
𝑛1

𝑛2
+ ln

𝑛2 − 𝑧

𝑛1 − 𝑧
− 𝑧 𝑠𝑒 + ln

𝑆1
2

𝑆2
2 , 𝑧 < min(𝑛1, 𝑛2) 

Then, we have lim
z→−∞

𝐿(𝑧) = + ∞ and  

lim
z→min (𝑛1,𝑛2)

𝐿(𝑧) = {
+∞ if 𝑛1 < 𝑛2

−∞ if 𝑛2 < 𝑛1
 

Also, note that the derivative of 𝐿(𝑧) satisfies 

−
(𝑛1 − 𝑧)(𝑛2 − 𝑧)

𝑠𝑒
𝐿′(𝑧) = 𝑧2 − (𝑛1 + 𝑛2)𝑧 + 𝑛1𝑛2 +

𝑛1 − 𝑛2

𝑠𝑒
 

Let  

𝑄(𝑧) = −
(𝑛1 − 𝑧)(𝑛2 − 𝑧)

𝑠𝑒
𝐿′(𝑧) 
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If 𝑛1 < 𝑛2, then quadratic 𝑄(𝑧) has two roots given as 

𝑧1 =
𝑛1 + 𝑛2 − √(𝑛1 − 𝑛2)(𝑛1 − 𝑛2 −

4
𝑠𝑒

)

2
  

and 

𝑧2 =
𝑛1 + 𝑛2 + √(𝑛1 − 𝑛2)(𝑛1 − 𝑛2 −

4
𝑠𝑒

)

2
 

Since 𝑄(𝑛1) =
𝑛1−𝑛2

𝑠𝑒
< 0, we have 𝑧1 < 𝑛1 = min (𝑛1, 𝑛2) < 𝑧2 so that 𝑄(𝑧) > 0 for 𝑧 in (−∞, 𝑧1) 

and so that 𝑄(𝑧) < 0 for 𝑧 in (𝑧1, 𝑛1). It follows that 𝐿′(𝑧) < 0 for 𝑧 in (−∞, 𝑧1) and that 𝐿′(𝑧) > 0 

for 𝑧 in (𝑧1, 𝑛1). Thus 𝐿(𝑧) is convex on the domain (−∞, min(𝑛1, 𝑛2)) and reaches its minimum 

value at  𝑧1 ≡ 𝑧𝑚. 

If 𝑛1 > 𝑛2, then there are two cases: the case where 𝑛1 − 𝑛2 > 4/𝑠𝑒 and the case where 

0 < 𝑛1 − 𝑛2 < 4/𝑠𝑒 . In the first case, 𝑧1 and 𝑧2 are the roots of 𝑄(𝑧) such that 𝑛2 =

min(𝑛1, 𝑛2) < 𝑧1 < 𝑧2. (This is because 𝑛2 −
𝑧1+𝑧2

2
=

𝑛2−𝑛1

2
< 0). Thus 𝑄(𝑧) > 0 for 𝑧 in the domain 

(−∞, min(𝑛1, 𝑛2)). In the second case, 𝑄(𝑧) has no roots so that 𝑄(𝑧) > 0 on the domain. 

It follows that if  𝑛1 > 𝑛2, then 𝐿′(𝑧) < 0 so that 𝐿(𝑧) decreases monotonically from +∞ to −∞. 
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