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This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

2-Sample % Defective Test 

Overview 
A test for 2 proportions is used to determine whether two proportions significantly differ. In 

quality analysis, the test is often used when a product or service is characterized as defective or 

not defective, to determine whether the percentage of defective items significantly differs for 

samples collected from two independent processes.  

The Minitab Assistant includes a 2-Sample % Defective Test. The data collected for the test are 

the number of defective items in each of two independent samples, which is assumed to be the 

observed value of a binomial random variable. The Assistant uses exact methods to calculate the 

hypothesis test results; therefore, the actual Type I error rate should be near the level of 

significance (alpha) specified for the test and no further investigation is required. However, the 

Assistant uses a normal approximation method to calculate the confidence interval (CI) for the 

difference in % defectives and a theoretical power function of the normal approximation test to 

perform its power and sample size analysis. Because these are approximation methods, we need 

to evaluate them for accuracy.  

In this paper, we investigate the conditions under which the approximate confidence intervals 

are accurate. We also investigate the method used to evaluate power and sample size for the  

2-Sample % Defective Test, comparing the theoretical power of the approximate method with 

the actual power of the exact test. Finally, we examine the following data checks that are 

automatically performed and displayed in the Assistant Report Card and explain how they affect 

the results of the analysis:  

 Validity of CI 

 Sample size 

The 2-Sample % Defective Test also depends on other assumptions. See Appendix A for details. 
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2-sample % defective test methods 

Accuracy of confidence intervals 
Although the Assistant uses Fisher’s exact test to evaluate whether the % defectives of the two 

samples differ significantly, the confidence interval for the difference is based upon the normal 

approximation method. According to the general rule found in most statistical textbooks, this 

approximate confidence interval is accurate if the observed number of defectives and the 

observed number of nondefectives in each sample is at least 5. 

Objective 

We wanted to evaluate the conditions under which confidence intervals based on the normal 

approximation are accurate. Specifically, we wanted to see how the general rule related to the 

number of defectives and nondefectives in each sample affects the accuracy of the approximate 

confidence intervals. 

Method 

The formula used to calculate the confidence interval for the difference between the two 

proportions and the general rule for ensuring its accuracy are described in Appendix D. In 

addition, we describe a less stringent, modified rule that we developed during the course of our 

investigation. 

We performed simulations to evaluate the accuracy of the approximate confidence interval 

under various conditions. To perform the simulations, we generated random pairs of samples of 

various sizes from several Bernoulli populations. For each type of Bernoulli population, we 

calculated an approximate confidence interval for the difference between the two proportions 

on each pair of 10,000 Bernoulli sample replicates. Then we calculated the proportion of the 

10,000 intervals that contain the true difference between the two proportions, referred to as the 

simulated coverage probability. If the approximate interval is accurate, the simulated coverage 

probability should be close to the target coverage probability of 0.95. To evaluate the accuracy 

of the approximate interval in relation to the original and modified rules for the minimum 

number of defectives and nondefectives required in each sample, we also calculated the 

percentage of the 10,000 pairs of samples for which each rule was satisfied. For more details, see 

Appendix D. 

Results 

The approximate confidence interval for the difference between two proportions is generally 

accurate when samples are sufficiently large—that is, when the observed number of defectives 

and the observed number of nondefectives in each sample is at least 5. Therefore, we adopted 

this rule for our Validity of CI check in the Report Card. Although this rule generally performs 
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well, in some cases it can be overly conservative, and it may be somewhat relaxed when the two 

proportions are close to 0 or 1. For more details, see the Data Check section and Appendix D. 

Performance of theoretical power function 
The Assistant performs the hypothesis test to compare two Bernoulli population proportions (% 

defectives in two samples) using Fisher’s test. However, because the power function of this exact 

test is not easily derived, the power function must be approximated using the theoretical power 

function of the corresponding normal approximation test. 

Objective 

We wanted to determine whether the theoretical power function based on the normal 

approximation test is appropriate to use to evaluate the power and sample size requirements for 

the 2-Sample % Defective test in the Assistant. To do this, we needed to evaluate whether this 

theoretical power function accurately reflects the actual power of Fisher’s exact test.  

Method 

The methodology for Fisher’s exact test, including the calculation of its p-value, is described in 

detail in Appendix B. The theoretical power function based on the normal approximation test is 

defined in Appendix C. Based on these definitions, we performed simulations to estimate the 

actual power levels (which we refer to as simulated power levels) of Fisher’s exact test when it is 

used to analyze the difference in % defectives from two samples.  

To perform the simulations, we generated random pairs of samples of various sizes from several 

Bernoulli populations. For each category of Bernoulli population, we performed Fisher’s exact 

test on each pair of 10,000 sample replicates. For each sample size, we calculated the simulated 

power of the test to detect a given difference as the fraction of the 10,000 pairs of samples for 

which the test was significant. For comparison, we also calculated the corresponding theoretical 

power based on the normal approximation test. If the approximation works well, the theoretical 

and simulated power levels should be close. For more details, see Appendix E. 

Results 

Our simulations showed that, in general, the theoretical power function of the normal 

approximation test and the simulated power function of Fisher’s exact test are nearly equal. 

Therefore, the Assistant uses the theoretical power function of the normal approximation test to 

estimate the samples sizes needed to detect practically important differences when performing 

Fisher’s exact test. 
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Data checks 

Validity of CI 
Because the 2-Sample % Defective test uses an exact test to evaluate the difference in % 

defectives, its accuracy is not greatly affected by the number of defectives and nondefectives in 

each sample. However, the confidence interval for the difference between the % defectives is 

based on a normal approximation. When the number of defectives and nondefectives in each 

sample increases, the accuracy of the approximate confidence interval also increases (see 

Appendix D). 

Objective 

We wanted to determine whether the number of defectives and the number of nondefectives in 

the samples are sufficient to ensure that the approximate confidence interval for the difference 

in % defectives is accurate.  

Method 

We used the general rule found in most statistical textbooks. When each sample contains at 

least 5 defectives and 5 nondefectives, the approximate confidence interval for the 2-sample % 

defective test is accurate. For more details, see the 2-sample % defective method section above.  

Results 

As shown in the simulations summarized in the 2-Sample % Defective Method section, the 

accuracy of the confidence interval depends on the minimum number of defectives and 

nondefectives in each sample. Therefore, the Assistant Report Card displays the following status 

indicators to help you evaluate the accuracy of the confidence interval for the difference 

between two % defectives: 

Status Condition 

 

Both samples have at least 5 defectives and 5 nondefectives. The confidence interval for the 
difference should be accurate. 

 

Either the number of defectives or the number of nondefectives in at least one sample is less than 
5. The confidence interval for the difference may not be accurate. 

 

Sample size 
Typically, a statistical hypothesis test is performed to gather evidence to reject the null 

hypothesis of “no difference”. If the sample is too small, the power of the test may not be 

adequate to detect a difference that actually exists, which results in a Type II error. It is therefore 
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crucial to ensure that the sample sizes are sufficiently large to detect practically important 

differences with high probability.  

Objective 

If the data does not provide sufficient evidence to reject the null hypothesis, we want to 

determine whether the sample sizes are large enough for the test to detect practical differences 

of interest with high probability. Although the objective of sample size planning is to ensure that 

sample sizes are large enough to detect important differences with high probability, they should 

not be so large that meaningless differences become statistically significant with high 

probability.  

Method 

The power and sample size analysis for the 2-Sample % Defective test is based upon the 

theoretical power function of the normal approximation test, which provides a good estimate of 

the actual power of Fisher’s exact test (see the simulation results summarized in Performance of 

Theoretical Power Function in the 2-Sample % Defective Method section). The theoretical power 

function may be expressed as a function of the target difference in % defective and the overall 

% defective in the combined samples. 

Results 

When the data does not provide enough evidence against the null hypothesis, the Assistant uses 

the power function of the normal approximation test to calculate the practical differences that 

can be detected with an 80% and a 90% probability for the given sample size. In addition, if the 

user provides a particular practical difference of interest, the Assistant uses the power function 

of the normal approximation test to calculate sample sizes that yield an 80% and a 90% chance 

of detection of the difference. 

To help interpret the results, the Assistant Report Card for the 2-Sample % Defective Test 

displays the following status indicators when checking for power and sample size: 

Status Condition 

 

The test finds a difference between the % defectives, so power is not an issue. 

OR 

Power is sufficient. The test did not find a difference between the % defectives, but the sample is 
large enough to provide at least a 90% chance of detecting the given difference (power ≥ .90). 

 

Power may be sufficient. The test did not find a difference between the % defectives, but the 
sample is large enough to provide an 80% to 90% chance of detecting the given difference (.80 ≤ 
power < .90). The sample size required to achieve 90% power is reported. 

 

Power might not be sufficient. The test did not find a difference between the % defectives, and the 
sample is large enough to provide a 60% to 80% chance of detecting the given difference (.60 ≤ 
power < .80). The sample sizes required to achieve 80% power and 90% power are reported. 
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Status Condition 

 

The power is not sufficient. The test did not find a difference between the % defectives, and the 
sample is not large enough to provide at least a 60% chance of detecting the given difference 
(power < .60). The sample sizes required to achieve 80% power and 90% power are reported. 

 

The test did not find a difference between the % defectives. You did not specify a practical 
difference to detect. Depending on your data, the report may indicate the differences that you 
could detect with 80% and 90% chance, based on your sample size and alpha. 
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Appendix A: Additional assumptions 
for 2-sample % defective test 
The 2-Sample % Defective test is based on the following assumptions:  

 The data in each sample consist of n distinct items, with each item classified as either 

defective or not defective. 

 The probability of an item being defective is the same for each item within a sample. 

 The likelihood of an item being defective is not affected by whether another item is 

defective or not. 

These assumptions cannot be verified in the data checks of the Assistant Report Card because 

summary data, rather than raw data, is entered for this test. 
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Appendix B: exact test 
Suppose that we observe two independent random samples 𝑋1, … , 𝑋𝑛1and 𝑌1, … , 𝑌𝑛2 from 

Bernoulli distributions, such that  

𝑝1 = Pr(𝑋𝑖 = 1) = 1 − Pr(𝑋𝑖 = 0) and 𝑝2 = Pr(𝑌𝑗 = 1) = 1 − Pr(𝑌𝑗 = 0) 

In the following sections, we describe the procedures for making inferences about the difference 

between the proportions 𝛿 = 𝑝1 − 𝑝2. 

est and p-value 
A description of Fisher’s exact test can be found in Arnold (1994). We provide a brief description 

of the test. 

Let 𝑉 be the number of successes in the first sample and 𝑣 = 𝑛1𝑝̂1be the observed number of 

successes in the first sample when an experiment is performed. Also, let 𝑊 be the total number 

of successes in the two samples and 𝑤 = 𝑛1𝑝̂1 + 𝑛2𝑝̂2 be the observed successes when an 

experiment is performed. Note that 𝑝̂1and 𝑝̂2are the sample point estimates of 𝑝1and 𝑝2.  

Under the null hypothesis that  𝛿 = 𝑝1 − 𝑝2 = 0, the conditional distribution of 𝑉given 𝑊 is the 

hyper-geometric distribution with the probability mass function  

𝑓(𝑣|𝑤) =
(
𝑛1
𝑣
) (
𝑛2
𝑤
)

(
𝑛1 + 𝑛2
𝑤

)
 

Let 𝐹(𝑣|𝑤) be the c.d.f of the distribution. Then the p-values for the one-sided and two-sided 

tests are: 

 When testing against 𝜹 < 0 or equivalently 𝒑𝟏 < 𝒑𝟐 

The p-value is calculated as 𝐹(𝑣|𝑤), where 𝑣 is the observed value of 𝑉 or the observed 

number of successes in the first sample and 𝑤 is the observed value of 𝑊 or the 

observed number of successes in both samples. 

 When testing against 𝜹 > 0 or equivalently 𝒑𝟏 > 𝒑𝟐 

The p-value is calculated as 1 − 𝐹(𝑣 − 1|𝑤), where 𝑣 is the observed value of 𝑉 or the 

observed number of successes in the first sample and 𝑤 is the observed value of 𝑊 or 

the observed number of successes in both samples. 
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 When testing against 𝜹 ≠ 𝟎 or equivalently 𝒑𝟏 ≠ 𝒑𝟐 

The p-value is calculated according to the following algorithm, where 𝑚 is the mode of 

hypergeometric distribution described above.  

o If 𝑣 < 𝑚, then the p-value is calculated as 1 − 𝐹(𝑦 − 1|𝑤) + 𝐹(𝑣|𝑤), where 𝑣 and 

𝑤 are as defined above and 𝑦 = min{𝑘 ≥ 𝑚: 𝑓(𝑘|𝑤) ≤ 𝑓(𝑣|𝑊)} 

o If 𝑣 = 𝑚, then the p-value is 1.0 

o If 𝑣 > 𝑚, then the p-value is calculated as 1 − 𝐹(𝑣 − 1|𝑤) + 𝐹(𝑦|𝑤), where 𝑣 and 

𝑤 are as defined above and  𝑦 = max{𝑘 ≤ 𝑚: 𝑓(𝑘|𝑤) ≤ 𝑓(𝑣|𝑊)} 
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Appendix C: Theoretical power 
function 
To compare two proportions (or, more specifically, two % defectives), we use Fisher’s exact test, 

as described in Appendix B. Because a theoretical power function of this test is too complex to 

derive, we use an approximate power function. More specifically, we use the power function of 

the well-known normal approximation test for two proportions to approximate the power of 

Fisher’s exact test.  

The power function of the normal approximation for the two-sided test is 

𝜋(𝑛1, 𝑛2, 𝛿) = 1 − Φ

(

 
−𝛿 + 𝑧𝛼

2
√𝑝𝑐(1 − 𝑝𝑐) (

1
𝑛1
+
1
𝑛2
)

𝑠𝑒

)

 + Φ(
−𝛿 − 𝑧𝛼/2√𝑝𝑐(1 − 𝑝𝑐)(1/𝑛1  + 1/𝑛2)

𝑠𝑒
) 

 

where 𝛿 = 𝑝1 − 𝑝2,  

𝑠𝑒 = √
𝑝1(1 − 𝑝1)

𝑛1
+
𝑝2(1 − 𝑝2)

𝑛2
 

 

and 𝑝𝑐 = (𝑛1𝑝1 + 𝑛2𝑝2)/(𝑛1 + 𝑛2). 

 

When testing 𝑝1 = 𝑝2 against 𝑝1 > 𝑝2 the power function is  

𝜋(𝑛1, 𝑛2, 𝛿) = 1 − Φ

(

 
−𝛿 + 𝑧𝛼√𝑝𝑐(1 − 𝑝𝑐) (

1
𝑛1
+
1
𝑛2
)

𝑠𝑒

)

  

 

When testing 𝑝1 = 𝑝2 against 𝑝1 < 𝑝2 the power function is  

𝜋(𝑛1, 𝑛2, 𝛿) = Φ

(

 
−𝛿 − 𝑧𝛼√𝑝𝑐(1 − 𝑝𝑐) (

1
𝑛1
+
1
𝑛2
)

𝑠𝑒

)
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Appendix D: Approximate confidence 
intervals 

Formula D1: Calculating an approximate confidence 
interval for the difference between 2 proportions 
An asymptotic 100(1 − 𝛼)% confidence interval for 𝛿 = 𝑝1 − 𝑝2 based on the normal 

approximation is:  

𝑝̂1 − 𝑝̂2 ± 𝑧𝛼/2√𝑝̂1(1 − 𝑝̂1)/𝑛1 + 𝑝̂2(1 − 𝑝̂2)/𝑛2 

A well-known general rule for assessing the reliability of this approximate confidence interval is 

𝑛1𝑝̂1 ≥ 5, 𝑛1(1 − 𝑝̂1) ≥ 5, 𝑛2𝑝̂2 ≥ 5 and 𝑛2(1 − 𝑝̂2) ≥ 5. In other words, the confidence interval is 

accurate if the observed number of successes and failures in each sample is at least 5.  

Note: In this section and the sections that follow, we express the rule for the confidence interval 

in its most general form, in terms of the number of successes and the number of failures in each 

sample. A success is the event of interest and a failure is the complement of the event of 

interest. Therefore, in the specific context of the 2-Sample % Defective Test, the number of 

“successes” is equivalent to the number of defectives and the number of “failures” is equivalent 

to the number of nondefectives.  

Formula D2: Rules for approximate confidence 
intervals 
The general rule used for confidence intervals based on the normal approximation states that 

the confidence intervals are accurate if 𝑛1𝑝̂1 ≥ 5, 𝑛1(1 − 𝑝̂1) ≥ 5, 𝑛2𝑝̂2 ≥ 5 and 𝑛2(1 − 𝑝̂2) ≥ 5. 

That is, the actual confidence level of the interval is equal to or approximately equal to the 

target confidence level if each sample contains at least 5 successes (defectives) and 5 failures 

(nondefectives). 

The rule is expressed in terms of the estimated proportions of successes and failures as opposed 

to the true proportions because in practice the true proportions are unknown. However, in 

theoretical settings where the true proportions are assumed or known, the rule can be directly 

expressed in terms of the true proportions. In these cases, one can directly assess how the true 

expected number of successes and expected number of failures, 𝑛1𝑝1, 𝑛2𝑝2, 𝑛1(1 − 𝑝1), and 

𝑛2(1 − 𝑝2), affect the actual coverage probability of the confidence interval for the difference 

between the proportions.  

We can evaluate the actual coverage probability by sampling a large number of pairs of samples 

of sizes 𝑛1 and 𝑛2 from the two Bernoulli populations with probability of successes 𝑝1 and 𝑝2 . 

The actual coverage probability is then calculated as the relative frequency of the pairs of 
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samples yielding confidence intervals that contain the true difference between the two 

proportions. If the actual coverage probability is accurate when 𝑛1𝑝1 ≥ 5, 𝑛2𝑝2 ≥ 5, 𝑛1(1 − 𝑝1) ≥

5, and 𝑛2(1 − 𝑝2) ≥ 5 then by the strong law of large numbers, the coverage probability is 

accurate when  𝑛1𝑝̂1 ≥ 5, 𝑛1(1 − 𝑝̂1) ≥ 5, 𝑛2𝑝̂2 ≥ 5 and 𝑛2(1 − 𝑝̂2) ≥ 5.  Thus, when the actual 

and the target confidence level are close, one would expect a large proportion of the pairs of 

the samples generated from the two Bernoulli populations to be such that  𝑛1𝑝̂1 ≥ 5, 𝑛1(1 −

𝑝̂1) ≥ 5, 𝑛2𝑝̂2 ≥ 5 and 𝑛2(1 − 𝑝̂2) ≥ 5 if this rule is valid. In the simulation that follows, we refer 

to this rule as Rule 1. 

In addition, in the course of this investigation, in many cases, we noticed that if either 𝑛1𝑝1 ≥ 5 

and 𝑛2𝑝2 ≥ 5  or if 𝑛1(1 − 𝑝1) ≥ 5 and 𝑛2(1 − 𝑝2) ≥ 5, then the simulated coverage probability 

of the interval is near the target coverage. This prompted an alternative and more relaxed rule 

that states that the approximate confidence intervals are accurate if 𝑛1𝑝̂1 ≥ 5 and 𝑛2𝑝̂2 ≥ 5, or if 

𝑛1(1 − 𝑝̂1) ≥ 5 and 𝑛2(1 − 𝑝̂2) ≥ 5. In the simulation that follows, we refer to this modified rule 

as Rule 2. 

Simulation D1: Evaluating accuracy of approximate 
confidence intervals  
We performed simulations to evaluate the conditions under which the approximate confidence 

interval for the difference between two proportions is accurate. In particular, we examined the 

accuracy of the interval in relation to the following general rules: 

Rule 1 (original)  𝑛1𝑝1 ≥ 5, 𝑛2𝑝2 ≥ 5, 𝑛1(1 − 𝑝1) ≥ 5, and 𝑛2(1 − 𝑝2) ≥ 5 

Rule 2 (modified) 𝑛1𝑝̂1 ≥ 5 and 𝑛2𝑝̂2 ≥ 5 OR  𝑛1(1 − 𝑝̂1) ≥ 5 and 𝑛2(1 − 𝑝̂2) ≥ 5 

In each experiment, we generated 10,000 pairs of samples from pairs of Bernoulli populations 

defined by the following proportions: 

 A-proportions: both 𝒑𝟏 and 𝒑𝟐are near 1.0 (or near 0). To represent this pair of 

Bernoulli populations in the simulation, we used 𝑝1 = 0.8 and 𝑝2 = 0.9. 

 B-proportions: 𝐛𝐨𝐭𝐡 𝒑𝟏 and 𝒑𝟐are near 0.5. To represent this pair of Bernoulli 

populations in the simulation we used 𝑝1 = 0.4 and 𝑝2 = 0.55. 

 C-proportions: 𝒑𝟏 is near 0.5 and 𝒑𝟐is near 1.0 To represent this pair of Bernoulli 

populations in the simulation, we used  𝑝1 = 0.4 and 𝑝2 = 0.9. 

The classification of proportions above is based on the DeMoivre-Laplace normal approximation 

to the binomial distribution from which the approximate confidence intervals are derived. This 

normal approximation is known to be accurate when the Bernoulli sample is larger than 10 and 

the probability of success is near 0.5. When the probability of success is near 0 or 1, a larger 

Bernoulli sample is generally required. 

We fixed the sample sizes for both pairs at a single value of 𝑛, where 𝑛 = 10, 15, 20, 30,… , 100. 

We limited the study to balanced designs (𝑛1 = 𝑛2 = 𝑛) without any lost of generality because 
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both rules depend on the observed number of successes and failures, which can be controlled 

by the size of the samples and the proportion of successes.  

To estimate the actual confidence level of the confidence interval for the difference in the two 

population proportions (referred to as the simulated confidence level), we calculated the 

proportion of the 10,000 intervals that contain the true difference between the two proportions. 

The target coverage probability in each experiment was 0.95. In addition, we determined the 

percentage of the 10,000 samples for which the conditions under the two rules were satisfied.  

Note: For some small samples, the estimated standard error of the difference between the 

proportions was 0. We considered those samples “degenerate” and discarded them from the 

experiment. As a result, the number of sample replicates was slightly less than 10,000 in a few 

cases. 

The results are shown in Tables 1-11 and graphically displayed in Figure 1 below.  

Table 1  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=10. The target coverage probability is 0.95. 

𝒏 = 𝟏𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

        𝒑𝟐 

0.80 

0.90 

8.00 

9.00 

2.00 

1.00 

0.907 0.0 99.1 

B      𝒑𝟏 

        𝒑𝟐 

0.40 

0.55 

4.00 

5.50 

6.00 

4.50 

0.928 4.4 63.0 

C      𝒑𝟏 

        𝒑𝟐 

0.45 

0.90 

4.50 

9.00 

5.50 

1.00 

0.919 0.0 48.3 

 

Table 2  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=15. The target coverage probability is 0.95. 

𝒏 = 𝟏𝟓 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

        𝒑𝟐 

0.80 

0.90 

12.00 

13.50 

3.00 

1.50 

0.938 0.2 100.0 

B      𝒑𝟏 

        𝒑𝟐 

0.40 

0.55 

6.00 

8.25 

9.00 

6.75 

0.914 65.0 97.3 
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𝒏 = 𝟏𝟓 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

C      𝒑𝟏 

        𝒑𝟐 

0.45 

0.90 

6.75 

13.50 

8.25 

1.50 

0.930 

 

1.2 86.9 

 

Table 3  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=20. The target coverage probability is 0.95. 

𝒏 = 𝟐𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

        𝒑𝟐 

0.80 

0.90 

16.00 

18.00 

4.00 

2.00 

0.942 1.5 100.0 

B      𝒑𝟏 

        𝒑𝟐 

0.40 

0.55 

8.00 

11.00 

12.00 

9.00 

0.943 92.8 99.9 

C      𝒑𝟏 

        𝒑𝟐 

0.45 

0.90 

9.00 

18.00 

11.00 

2.00 

0.934 4.1 98.2 

 

Table 4  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=30. The target coverage probability is 0.95. 

𝒏 = 𝟑𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

        𝒑𝟐 

0.80 

0.90 

24.00 

27.00 

6.00 

3.00 

0.941 4.3 100.0 

B      𝒑𝟏 

        𝒑𝟐 

0.40 

0.55 

12.00 

16.50 

18.00 

13.50 

0.944 99.7 100.0 

C      𝒑𝟏 

        𝒑𝟐 

0.45 

0.90 

13.50 

27.00 

16.50 

3.00 

0.938 7.2 100.0 
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Table 5  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=40. The target coverage probability is 0.95. 

𝒏 = 𝟒𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 

Probability 

%Samples 

Satisfying 

Rule 1 

%Samples 

Satisfying 

Rule 2 

A      𝒑𝟏 

        𝒑𝟐 

0.80 

0.90 

32.00 

36.00 

8.00 

4.00 

0.941 35.1 100.0 

B      𝒑𝟏 

        𝒑𝟐 

0.40 

0.55 

16.00 

22.00 

24.00 

18.00 

0.945 100.0 100.0 

C      𝒑𝟏 

        𝒑𝟐 

0.45 

0.90 

18.00 

36.00 

22.00 

4.00 

0.945 37.7 100.0 

 

Table 6  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=50. The target coverage probability is 0.95. 

𝒏 = 𝟓𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

         𝒑𝟐 

0.80 

0.90 

40.00 

45.00 

10.00 

5.00 

0.942 36.4 100.0 

B      𝒑𝟏 

         𝒑𝟐 

0.40 

0.55 

20.00 

27.50 

30.00 

22.50 

0.944 100.0 100.0 

C      𝒑𝟏 

         𝒑𝟐 

0.45 

0.90 

22.50 

45.00 

27.50 

5.00 

0.935 38.3 100.0 
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Table 7  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=60. The target coverage probability is 0.95. 

𝒏 = 𝟔𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

         𝒑𝟐 

0.80 

0.90 

48.00 

54.00 

12.00 

6.00 

0.947 72.8 100.0 

B      𝒑𝟏 

         𝒑𝟐 

0.40 

0.55 

24.00 

33.00 

36.00 

27.00 

0.947 100.0 100.0 

C      𝒑𝟏 

         𝒑𝟐 

0.45 

0.90 

27.00 

54.00 

33.00 

6.00 

0.949 73.1 100.0 

 

Table 8  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=70. The target coverage probability is 0.95. 

𝒏 = 𝟕𝟎 

Category Proportion (p) 𝐧𝐩 𝐧(𝟏 − 𝐩) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

         𝒑𝟐 

0.80 

0.90 

56.00 

63.00 

14.00 

7.00 

0.939 71.7 100.0 

B      𝒑𝟏 

         𝒑𝟐 

0.40 

0.55 

28.00 

38.50 

42.00 

31.50 

0.945 

 

100.0 100.0 

C      𝒑𝟏 

         𝒑𝟐 

0.45 

0.90 

31.50 

63.00 

38.50 

7.00 

0.944 71.8 100.0 
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Table 9  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and Rule 

2 for n=80. The target coverage probability is 0.95. 

𝒏 = 𝟖𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

         𝒑𝟐 

0.80 

0.90 

64.00 

72.00 

16.00 

8.00 

0.947 91.3 100.0 

B      𝒑𝟏 

         𝒑𝟐 

0.40 

0.55 

32.00 

44.00 

48.00 

36.00 

0.947 100.0 100.0 

C      𝒑𝟏 

         𝒑𝟐 

0.45 

0.90 

36.00 

72.00 

44.00 

8.00 

0.948 91.3 100.0 

 

Table 10  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and 

Rule 2 for n=90. The target coverage probability is 0.95. 

𝒏 = 𝟗𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

         𝒑𝟐 

0.80 

0.90 

72.00 

81.00 

18.00 

9.00 

0.947 95.18 100.0 

B      𝒑𝟏 

         𝒑𝟐 

0.40 

0.55 

36.00 

49.50 

54.00 

40.50 

0.951 100.0 100.0 

C      𝒑𝟏 

         𝒑𝟐 

0.45 

0.90 

40.50 

81.00 

49.50 

9.00 

0.945 95.2 100.0 
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Table 11  Simulated coverage probabilities and percentage of samples satisfying Rule 1 and 

Rule 2 for n=100. The target coverage probability is 0.95. 

𝒏 = 𝟏𝟎𝟎 

Category Proportion (p) 𝒏𝒑 𝒏(𝟏 − 𝒑) Coverage 
Probability 

%Samples 
Satisfying 
Rule 1 

%Samples 
Satisfying 
Rule 2 

A      𝒑𝟏 

         𝒑𝟐 

0.80 

0.90 

80.00 

90.00 

20.00 

10.00 

0.952 97.7 100.0 

B      𝒑𝟏 

         𝒑𝟐 

0.40 

0.55 

40.00 

55.00 

60.00 

45.00 

0.945 100.0 100.0 

C      𝒑𝟏 

         𝒑𝟐 

0.45 

0.90 

45.00 

90.00 

55.00 

10.00 

0.948 97.7 100.0 

 

 

Figure 1  Simulated coverage probabilities plotted against sample size for each category of 

Bernoulli populations. 

The results in Tables 1-11 and Figure 1 show that samples generated from Bernoulli populations 

in category B (when both proportions are close to 0.5) generally yield simulated coverage 

probabilities that are more stable and close to the target coverage of 0.95. In this category, the 
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expected numbers of successes and failures in both populations is larger than in the other 

categories, even when the samples are small.  

On the other hand, for the samples generated from the pairs of Bernoulli populations in 

category A (when both proportions are near 1.0) or in category C (when one proportion is near 

1.0 and the other near 0), the simulated coverage probabilities are off target in the smaller 

samples, except when either the expected number of successes (np) or the expected number of 

failures (n(1-p)) is large enough.  

For example, consider the samples generated from the Bernoulli populations in category A when 

𝑛 = 15. The expected numbers of successes are 12.0 and 13.5 and the expected numbers of 

failures are 3.0 and 1.5 for each population, respectively. Even though the expected number of 

failures is less than 5 for both populations, the simulated coverage probability is about 0.94. 

Results such as these led us to create Rule 2, which requires only that either the expected 

number of successes or the expected number of failures be greater than or equal to 5 for each 

sample. 

To more fully evaluate how effectively Rule 1 and Rule 2 can assess the approximation for the 

confidence interval, we plotted the percentage of samples satisfying Rule 1 and the percentage 

of samples satisfying Rule 2 against the simulated coverage probabilities in the experiments. The 

plots are displayed in Figure 2.  

 

Figure 2  The percentage of samples satisfying Rule 1 and Rule 2 plotted against the simulated 

coverage probability, for each category of Bernoulli populations. 
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The plots show that as the simulated coverage probabilities approach the target coverage of 

0.95, the percentage of samples that meet the requirements of each rule generally approaches 

100%. For samples generated from Bernoulli populations in categories A and C, Rule 1 is 

stringent when samples are small, as evidenced by the extremely low percentage of samples 

satisfying the rule, even though the simulated coverage probabilities are close to the target. For 

example, when  𝑛 = 20 and the samples are generated from the Bernoulli populations in 

category A, the simulated coverage probability is 0.942 (see Table 3). However, the proportion of 

samples satisfying the rule is nearly 0 (0.015) (see Figure 2). Therefore, in these cases, the rule 

may be too conservative. 

Rule 2, on the other hand, is less stringent for small samples generated from the Bernoulli 

populations in category A. For example, as shown in Table 1, when  𝑛 = 10 and the samples are 

generated from the Bernoulli populations in category A, the simulated coverage probability is 

0.907 and 99.1% of the samples satisfy the rule.  

In conclusion, Rule 1 tends to be overly conservative when samples are small. Rule 2 is less 

conservative and may be preferred when the sample sizes are small. However, Rule 1 is well 

known and well accepted. Although Rule 2 shows promising potential, in some cases it can be 

too liberal, as shown earlier. One possibility is to combine the two rules to take advantage of 

each rule’s strengths; however, this approach requires further investigation before it can be 

applied.  
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Appendix E: Comparison of actual 
power versus theoretical power  

exact test 
We designed a simulation to compare the estimated actual power levels (referred to as 

simulated power levels) of Fisher’s exact test to the theoretical power levels based on the power 

function of the normal approximation test (referred to as approximate power levels). In each 

experiment, we generated 10,000 pairs of samples from pairs of Bernoulli populations.  For each 

pair of samples, the proportions were chosen so that the difference between the proportions 

was  𝑝1 − 𝑝2 = −0.20.  

 A-proportions: both 𝒑𝟏 and 𝒑𝟐 are near 1.0 (or near 0). To represent this pair of 

Bernoulli populations in the simulation, we used 𝑝1 = 0.70 and  𝑝2 = 0.90. 

 B-proportions: both 𝒑𝟏 and 𝒑𝟐 are near 0.5. To represent this pair of Bernoulli 

populations in the simulation, we used 𝑝1 = 0.40 and 𝑝2 = 0.60. 

 C-proportions: 𝒑𝟏 is near 0.5 and 𝒑𝟐 is near 1.0. To represent this pair of Bernoulli 

populations in the simulation, we used  𝑝1 = 0.55 and 𝑝2 = 0.75. 

We fixed the sample sizes for both pairs at a single value of 𝑛, where 𝑛 = 10, 15, 20, 30,… , 100. 

We limited the study to balanced designs (𝑛1 = 𝑛2 = 𝑛) because typically one assumes that the 

two samples have the same size. We calculated a common sample size needed to detect a 

practically important difference with a certain power. 

To estimate the actual power for Fisher’s exact test based on the results of each simulation, we 

calculated the fraction of the 10,000 sample pairs for which the two-sided test was significant at 

the target level of significance, 𝛼 = 0.05. Then we calculated the corresponding theoretical 

power levels based on the normal approximation test for comparison. The results are shown in 

Table 12 below. 
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Table 12  Simulated power levels of Fisher’s exact test compared with approximate power levels 

for the three categories of Bernoulli populations. The target level of significance is 𝛼 = 0.05. 

𝒏 A-Proportions B-Proportions C-Proportions 

𝒑𝟏 = 𝟎. 𝟕𝟎 

𝒑𝟐 = 𝟎. 𝟗𝟎 

𝒑𝟏 = 𝟎. 𝟒𝟎 

𝒑𝟐 = 𝟎. 𝟔𝟎 

𝒑𝟏 = 𝟎. 𝟓𝟓 

𝒑𝟐 = 𝟎. 𝟕𝟓 

Simulated 

Power 

App. 

Power 

Simulated 

Power 

App. 

Power 

Simulated 

Power 

App. 

Power 

10 0.063 0.193 0.056 0.140 0.056 0.149 

15 0.151 0.271 0.097 0.190 0.101 0.204 

20 0.244 0.348 0.146 0.240 0.183 0.259 

30 0.370 0.490 0.256 0.338 0.272 0.366 

40 0.534 0.612 0.371 0.431 0.381 0.466 

50 0.641 0.711 0.477 0.516 0.491 0.556 

60 0.726 0.789 0.536 0.593 0.560 0.635 

70 0.814 0.849 0.610 0.661 0.649 0.703 

80 0.870 0.893 0.660 0.720 0.716 0.760 

90 0.907 0.925 0.716 0.770 0.772 0.808 

100 0.939 0.948 0.792 0.812 0.812 0.848 

The results in Table 12 show that the approximate power tends to be higher than the simulated 

power for all three categories of Bernoulli populations (A, B, and C). For example, for the 

proportions in category A, the actual sample size required to detect an absolute difference of  

-0.20 with an approximate power level of 0.91 is about 90. In contrast, the corresponding sample 

size estimate based on the approximate theoretical power function is about 85. Therefore, the 

sample size estimate based on the approximate power function is generally slightly smaller than 

the actual sample size required to achieve a given power level. 
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You can see this relationship more clearly when the results are displayed as power curves, as 

shown in Figure 3 below. 

 

Figure 3  Plots of simulated and approximate power levels of the two-sided test for comparing 

two proportions. The power levels are plotted against sample size in separate panels for each 

category of Bernoulli populations. 

Notice that although the simulated power curves are lower than the approximate power curves 

for all three categories of Bernoulli populations (A, B, and C), the size of the difference between 

the curves depends upon the true proportions of the Bernoulli populations from which the 

samples are drawn. For example, when the two proportions are near 0.5 (category B), the two 

power levels are generally close. However, the disparity between the two power curves is more 

noticeable in small samples for the proportions associated with population categories A and C.   

These results show in general, the theoretical power function of the normal approximation test 

and the simulated power function of Fisher’s exact test are nearly equal. Therefore, the Assistant 

uses the theoretical power function of the normal approximation test to estimate the sample 

sizes before performing Fisher’s exact test. However, the sample sizes calculated using the 

approximate power function may be a bit smaller than the actual sample sizes required to 

achieve a given power to detect a difference between the two proportions (% defectives). 
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