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This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

Tests for Standard 
Deviations (Two or More 
Samples) 

Overview 
The Minitab Assistant includes two analyses to compare independent samples to determine 

whether their variability significantly differs. The 2-Sample Standard Deviation test compares the 

standard deviations of 2 samples, and the Standard Deviations test compares the standard 

deviations of more than 2 samples. In this paper, we refer to k-sample designs with k = 2 as 2-

sample designs and k-sample designs with k > 2 as multiple-sample designs. Generally, these 

two types of designs are studied separately (see Appendix A). 

Because the standard deviation is the square root of the variance, a hypothesis test that 

compares standard deviations is equivalent to a hypothesis test that compares variances. Many 

statistical methods have been developed to compare the variances from two or more 

populations. Among these tests, the Levene/Brown-Forsythe test is one of the most robust and 

most commonly used. However, the power performance of Levene/Brown-Forsythe test is less 

satisfactory than its Type I error properties in 2-sample designs. Pan (1999) shows that for some 

populations, including the normal population, the power of the test in 2-sample designs has an 

upper bound that may be far below 1 regardless of the magnitude of the difference between 

the standard deviations. In other words, for these types of data, the test is more likely to 

conclude that there is no difference between the standard deviations regardless of how big the 

difference is. For these reasons, the Assistant uses a new test, the Bonett test, for the 2-Sample 

Standard Deviation test. For the standard deviations test with multiple-sample designs, the 

Assistant uses a multiple comparison (MC) procedure. 
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The Bonett (2006) test, a modified version of Layard’s (1978) test of equality of two variances, 

enhances the test’s performance with small samples. Banga and Fox (2013A) derive the 

confidence intervals associated with Bonett’s test and show that they are as accurate as the 

confidence intervals associated with the Levene/Brown-Forsythe test and are more precise for 

most distributions. Additionally, Banga and Fox (2013A) determined that the Bonett test is as 

robust as Levene/Brown-Forsythe test and is more powerful for most distributions. 

The multiple comparison (MC) procedure includes an overall test of the homogeneity, or 

equality, of the standard deviations (or variances) for multiple samples, which is based on the 

comparison intervals for each pair of standard deviations. The comparison intervals are derived 

so that the MC test is significant if, and only if, at least one pair of the comparison intervals do 

not overlap. Banga and Fox (2013B) show that the MC test has Type I and Type II error 

properties that are similar to the Levene/Brown-Forsythe test for most distributions. One 

important advantage of the MC test is the graphical display of the comparison intervals, which 

provides an effective visual tool for identifying the samples with different standard deviations. 

When there are only two samples in the design, the MC test is equivalent to the Bonett test. 

In this paper, we evaluate the validity of the Bonett test and the MC test for different data 

distributions and sample sizes. In addition, we investigate the power and sample size analysis 

used for the Bonett test, which is based on a large-sample approximation method. Based on 

these factors, we developed the following checks that the Assistant automatically performs on 

your data and displays in the Report Card:  

 Unusual data 

 Normality 

 Validity of test 

 Sample size (2-Sample Standard Deviation test only) 
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Tests for standard deviations 
methods 

 
In their comparative study of tests for equal variances, Conover, et al. (1981) found that the 

Levene/Brown-Forsythe test was among the best performing tests, based on its Type I and Type 

II error rates. Since that time, other methods have been proposed for testing for equal variances 

in 2-sample and multiple-sample designs (Pan, 1999; Shoemaker, 2003; Bonett, 2006). For 

example, Pan shows that despite its robustness and simplicity of interpretation, the 

Levene/Brown-Forsythe test does not have sufficient power to detect important differences 

between 2 standard deviations when the samples originate from some populations, including 

the normal population. Because of this critical limitation, the Assistant uses the Bonett test for 

the 2-Sample Standard Deviation test (see Appendix A or Banga and Fox, 2013A). For the 

standard deviations test with more than 2 samples, the Assistant uses an MC procedure with 

comparison intervals that provides a graphical display to identify samples with different 

standard deviations when the MC test is significant (see Appendix A and Banga and Fox, 2013B).  

Objective 

First, we wanted to evaluate the performance of the Bonett test when comparing two population 

standard deviations. Second, we want to evaluate the performance of the MC test when 

comparing the standard deviations among more than two populations. Specifically, we wanted 

to evaluate the validity of these tests when they are performed on samples of various sizes from 

different types of distributions. 

Method 

The statistical methods used for the Bonett test and the MC test are defined in Appendix A. To 

evaluate the validity of the tests, we needed to examine whether their Type I error rates 

remained close to the target level of significance (alpha) under different conditions. To do this, 

we performed a set of simulations to evaluate the validity of the Bonett test when comparing 

the standard deviations from 2 independent samples and other sets of simulations to evaluate 

the validity of the MC test when comparing the standard deviations from multiple (k) 

independent samples, when k > 2. 

We generated 10,000 pairs or multiple (k) random samples of various sizes from several 

distributions, using both balanced and unbalanced designs. Then we performed a two-sided 

Bonett test to compare the standard deviations of the 2 samples or performed a MC test to 

compare the standard deviations of the k samples in each experiment, using a target 

significance level of 𝛼 = 0.05. We counted the number of times out of 10,000 replicates that the 

test rejected the null hypothesis (when in fact the true standard deviations were equal) and 
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compared this proportion, known as the simulated significance level, to the target significance 

level. If the test performs well, the simulated significance level, which represents the actual  

Type I error rate, should be very close to the target significance level. For more details on the 

specific methods used for the 2-sample and k-sample simulations, see Appendix B. 

Results 

For 2-sample comparisons, the simulated Type I error rates of the Bonett test were close to the 

target level of significance when the samples were moderate or large in size, regardless of the 

distribution and regardless of whether the design was balanced or unbalanced. However, when 

small samples were drawn from extremely skewed populations, the Bonett test was generally 

conservative, and had Type I error rates that were slightly lower than the target level of 

significance (that is, the target Type I error rate).  

For multiple-sample comparisons, the Type I error rates of the MC test were close to the target 

level of significance when the samples were moderate or large in size, regardless of the 

distribution and regardless of whether the design was balanced or unbalanced. For small and 

extremely skewed samples, however, the test was generally less conservative, and had Type I 

error rates that were higher than the target level of significance when the number of samples in 

the design is large.  

The results of our studies were consistent with those of Banga and Fox (2013A) and (2013B). We 

concluded that the Bonett test and the MC test perform well when the size of the smallest 

sample is at least 20. Therefore, we use this minimum sample size requirement in the Validity of 

test check in the Assistant Report Card (see the Data check section).  

Comparison intervals 
When a test to compare two or more standard deviations is statistically significant, indicating 

that at least one of the standard deviations is different from the others, the next step in the 

analysis is to determine which samples are statistically different. An intuitive way to make this 

comparison is to graph the confidence intervals associated with each sample and identify the 

samples whose intervals do not overlap. However, the conclusions drawn from the graph may 

not match the test results because the individual confidence intervals are not designed for 

comparisons.  

Objective 

We wanted to develop a method to calculate individual comparison intervals that can be used 

as both an overall test of the homogeneity of variances and as a method to identify samples 

with different variances when the overall test is significant. A critical requirement for the MC 

procedure is that the overall test is significant if, and only if, at least one pair of the comparison 

intervals do not overlap, which indicates that the standard deviations of at least two samples are 

different.  
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Method 

The MC procedure that we use to compare multiple standard deviations is derived from multiple 

pairwise comparisons. Each pair of samples is compared using the Bonett’s (2006) test of 

equality of two population standard deviations. The pairwise comparisons use a multiplicity 

correction based on a large-sample approximation shown in Nayakama (2009). The large-

sample approximation is preferred over the commonly-used Bonferroni correction because the 

Bonferroni correction becomes increasingly conservative as the number of samples increases. 

Finally, the comparison intervals result from the pairwise comparisons based on the Hochberg et 

al. (1982) best approximate procedure. For details, see Appendix A. 

Results 

The MC procedure satisfies the requirement that the overall test of the equality of standard 

deviations is significant if, and only if, at least two comparison intervals do not overlap. If the 

overall test is not significant, then all the comparison intervals must overlap. 

The Assistant displays the comparison intervals in the Standard Deviations Comparison Chart in 

the Summary Report. Next to this graph, the Assistant displays the p-value of the MC test, which 

is the overall test for the homogeneity of the standard deviations. When the standard deviations 

test is statistically significant, any comparison interval that does not overlap with at least one 

other interval is marked in red. If the standard deviations test is not statistically significant, then 

none of the intervals are marked in red.  

Performance of theoretical power (2-sample designs 
only) 
The theoretical power functions of the Bonett and MC tests are needed for planning sample 

sizes. For 2-sample designs, an approximate theoretical power function of the test can be 

derived using large-sample theory methods. Because this function results from large-sample 

approximation methods, we need to evaluate its properties when the test is conducted using 

small samples generated from normal and nonnormal distributions. When comparing the 

standard deviations of more than two groups, however, the theoretical power function of the 

MC test is not easily obtained. 

Objective 

We wanted to determine whether we could use the theoretical power function based on the 

large-sample approximation to evaluate the power and sample size requirements for the 2-

Sample Standard Deviation test in the Assistant. To do this, we needed to evaluate whether the 

approximated theoretical power function accurately reflects the actual power achieved by the 

Bonett test when it is performed on data from several types of distributions, including normal 

and nonnormal distributions.  
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Method 

The approximated theoretical power function of the Bonett test for 2-sample designs is derived 

in Appendix C.  

We performed simulations to estimate the actual power levels (which we refer to as simulated 

power levels) using the Bonett test. First, we generated pairs of random samples of various sizes 

from several distributions, including normal and nonnormal distributions. For each distribution, 

we performed the Bonett test on each of 10,000 pairs of sample replicates. For each pair of 

sample sizes, we calculated the simulated power of the test to detect a given difference as the 

fraction of the 10,000 pairs of samples for which the test is significant. For comparison, we also 

calculated the corresponding power level using the approximated theoretical power function of 

the test. If the approximation works well, the theoretical and simulated power levels should be 

close. For more details, see Appendix D. 

Results 

Our simulations showed that for most distributions the theoretical and simulated power 

functions of the Bonett test are nearly equal for small sample sizes and are closer when the 

minimum sample size reaches 20. For symmetric and nearly symmetric distributions with light to 

moderate tails the theoretical power levels are slightly higher than the simulated (actual) power 

levels. However, for skewed distributions and heavy-tailed distributions they are smaller than the 

simulated (actual) power levels. For more details, see Appendix D. 

Overall, our results show that the theoretical power function provides a good basis for planning 

sample sizes.  
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Data checks 

Unusual data 
Unusual data are extremely large or small data values, also known as outliers. Unusual data can 

have a strong influence on the results of the analysis and can affect the chances of finding 

statistically significant results, especially when the sample is small. Unusual data can indicate 

problems with data collection, or may be due to unusual behavior of the process you are 

studying. Therefore, these data points are often worth investigating and should be corrected 

when possible. The simulation studies show that when the data contain outliers, the Bonett test 

and the MC test are conservative (see Appendix B). The actual levels of significance of the tests 

are markedly smaller than the targeted level, particularly when the analysis is performed with 

small samples.  

Objective 

We wanted to develop a method to check for data values that are very large or very small 

relative to the overall sample and that may affect the results of the analysis.  

Method 

We developed a method to check for unusual data based on the method described by Hoaglin, 

Iglewicz, and Tukey (1986) that is used to identify outliers in boxplots. 

Results 

The Assistant identifies a data point as unusual if it is more than 1.5 times the interquartile range 

beyond the lower or upper quartile of the distribution. The lower and upper quartiles are the 

25th and 75th percentiles of the data. The interquartile range is the difference between the two 

quartiles. This method works well even when there are multiple outliers because it makes it 

possible to detect each specific outlier. 

When checking for unusual data, the Assistant displays the following status indicators in the 

Report Card: 

Status Condition 

 
There are no unusual data points.  

 
At least one data point is unusual and may have a strong influence on the results.  
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Normality 
Unlike most tests of equality of variances, which are derived under the normality assumption, 

the Bonett test and the MC test for equality of standard deviations do not make an assumption 

about the specific distribution of the data.  

Objective 

Although the Bonett test and the MC test are based on large-sample approximation methods, 

we wanted to confirm that they perform well for normal and nonnormal data in small samples. 

We also wanted to inform the user about how the normality of the data relates to the results of 

the standard deviations tests. 

Method 

To evaluate the validity of the tests under different conditions, we performed simulations to 

examine the Type I error rate of the Bonett test and the MC test with normal and nonnormal 

data of various sample sizes. For more details, see the Tests for standard deviations methods 

section and Appendix B. 

Results 

Our simulations showed that the distribution of the data does not have a major effect on the 

Type I error properties of the Bonett test or the MC test for sufficiently large samples (minimum 

sample size ≥ 20). The tests produce Type I error rates that are consistently close to the target 

error rate for both normal and nonnormal data.  

Based on these results concerning the Type I error rate, the Assistant displays the information 

about normality in the Report Card. 

For 2-sample designs, the Assistant displays the following indicator: 

Status Condition 

 

This analysis uses the Bonett Test. With sufficiently large samples, the test performs well for both 
normal and nonnormal data. 

 

For multiple-sample designs, the Assistant displays the following indicator: 

Status Condition 

 

This analysis uses a Multiple Comparison Test. With sufficiently large samples, the test performs well 
for both normal and nonnormal data. 
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Validity of test 
In the Tests for standard deviations methods section, we showed that for both 2-sample and 

multiple (k) comparisons, the Bonett test  and the MC test produce  Type I error rates close to 

the target error rate for normal as well as nonnormal data in balanced and unbalanced designs 

when the samples are moderate or large in size. However, when the samples are small, the 

Bonett and the MC tests don’t generally perform well. 

Objective 

We wanted to apply a rule to evaluate the validity of the standard deviation test results for 2 

samples and for multiple (k) samples, based on the user’s data. 

Method 

To evaluate the validity of the tests under different conditions, we performed simulations to 

examine the Type I error rate of the Bonett test and the MC test with various distributions of 

data, numbers of samples, and sample sizes, as described previously in the Tests for standard 

deviations methods section. For more details, see Appendix B. 

Results 

The Bonnet test and the MC test perform well when the size of the smallest sample is at least 20. 

Therefore, the Assistant displays the following status indicators in the Report Card to evaluate 

the validity of the standard deviations tests. 

Status Condition 

 
The sample sizes are at least 20, so the p-value should be accurate. 

 

Some of the sample sizes are less than 20, so the p-value may not be accurate. Consider increasing 
the sample sizes to at least 20. 

 

Sample size (for 2-Sample Standard Deviations test 
only) 
Typically, a statistical hypothesis test is performed to gather evidence to reject the null 

hypothesis of “no difference”. If the sample is too small, the power of the test may not be 

adequate to detect a difference that actually exists, which results in a Type II error. It is therefore 

crucial to ensure that the sample sizes are sufficiently large to detect practically important 

differences with high probability.  
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Objective 

If the data does not provide sufficient evidence to reject the null hypothesis, we wanted to 

determine whether the sample sizes are large enough for the test to detect practical differences 

of interest with high probability. Although the objective of sample size planning is to ensure that 

sample sizes are large enough to detect important differences with high probability, they should 

not be so large that meaningless differences become statistically significant with high 

probability.  

Method  

The power and sample size analysis for the 2-Sample Standard Deviations test is based upon an 

approximation of the power function of the Bonett test, which usually provides good estimates 

of the actual power function of the test (see the simulation results summarized in Performance 

of theoretical power function in the Method section).  

Results 

When the data does not provide enough evidence against the null hypothesis, the Assistant uses 

the approximate power function of the Bonett test to calculate the practical differences that can 

be detected with an 80% and a 90% probability for the given sample size. In addition, if the user 

provides a particular practical difference of interest, the Assistant uses the power function of the 

normal approximation test to calculate sample sizes that yield an 80% and a 90% chance of 

detection of the difference. 

To help interpret the results, the Assistant Report Card for the 2-Sample Standard Deviations 

Test displays the following status indicators when checking for power and sample size: 

Status Condition 

 

The test finds a difference between the standard deviations, so power is not an issue. 

OR 

Power is sufficient. The test did not find a difference between the standard deviations, but the 
sample is large enough to provide at least a 90% chance of detecting the given difference.  

 

Power may be sufficient. The test did not find a difference between the standard deviations, but the 
sample is large enough to provide an 80% to 90% chance of detecting the given difference. The 
sample size required to achieve 90% power is reported. 

 

Power might not be sufficient. The test did not find a difference between the standard deviations, 
and the sample is large enough to provide a 60% to 80% chance of detecting the given difference. 
The sample sizes required to achieve 80% power and 90% power are reported. 
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Status Condition 

 

Power is not sufficient. The test did not find a difference between the standard deviations, and the 
sample is not large enough to provide at least a 60% chance of detecting the given difference. The 
sample sizes required to achieve 80% power and 90% power are reported. 

 

The test did not find a difference between the standard deviations. You did not specify a practical 
difference to detect; therefore, the report indicates the differences that you could detect with 80% 
and 90% chance, based on your sample size and alpha. 
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Appendix A: Method for The Bonett 
test and the Multiple comparison test 
The underlying assumptions for making inferences about the standard deviations or variances 

using the Bonett method (2-sample designs) or the multiple comparison (MC) procedure 

(multiple-sample designs) can be described as follow. Let 𝑋11, … , 𝑋1𝑛1
, … , 𝑋𝑘1, … , 𝑋𝑘𝑛𝑘

 be 𝑘 (𝑘 ≥

2) independent random samples, with each sample drawn from a distribution with an unknown 

mean 𝜇𝑖 and variance 𝜎𝑖
2, respectively, for  𝑖 = 1, … , 𝑘. Let’s assume that the parent distributions 

of the samples have a common finite kurtosis 𝛾 = 𝐸(𝑌 − 𝜇)4 𝜎4⁄ < ∞. While this assumption is 

crucial for the theoretical derivations, it is not critical for most practical applications where the 

samples are sufficiently large (Banga and Fox, 2013A). 

Method A1: Bonett test of equality of two variances 
The Bonett test only applies to 2-sample designes where two variances or standard deviations 

are compared. The test is a modified version of Layard (1978) test of equality of variances in 

two-sample designs. A two-sided Bonett’s test of equality of two variances with significance 

level 𝛼 rejects the null hypothesis of equality if, and only if, 

|ln(𝑐 𝑆1
2/𝑆2

2)| > 𝑧𝛼/2√
�̂�𝑃 − 𝑔1

𝑛1 − 1
+

𝛾𝑃 − 𝑔2

𝑛2 − 1
 

where: 

𝑆𝑖 is the sample standard deviation of sample 𝑖 

𝑔𝑖 = (𝑛𝑖 − 3)/𝑛𝑖, 𝑖 = 1,2  

𝑧𝛼/2 refers to the upper 𝛼/2 percentile of the standard normal distribution 

𝛾𝑃 is the pooled kurtosis estimator given as: 

𝛾𝑃 = (𝑛1 + 𝑛2)
∑ (𝑋1𝑗 − 𝑚1)

4𝑛1
𝑗=1 + ∑ (𝑋2𝑗 − 𝑚2)

4𝑛2
𝑗=1

[(𝑛1 − 1)𝑆1
2 + (𝑛2 − 1)𝑆2

2]2
 

In the expression of the pooled kurtosis estimator, 𝑚𝑖 is the trimmed mean for sample 𝑖, with 

the trim proportion, 1/[2(𝑛𝑖 − 4)1/2]. 

In the above, the constant 𝑐 is included as a small sample adjustment to reduce the effect of 

unequal tail error probabilities in unbalanced designs. This constant is given as 𝑐 = 𝑐1/𝑐2, where  

𝑐i =
𝑛i

𝑛i − 𝑧𝛼/2
, 𝑖 = 1,2 

If the design is balanced, that is if 𝑛1 = 𝑛2, then the p-value of the test is obtained as 

P = 2 Pr(𝑍 > 𝑧) 
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where 𝑍 is a random varianble distributed as the standard normal distribution and 𝑧 the 

observed value of the following statistics based on the data at hand. The statistic is 

𝑍 =
ln(𝐶 𝑆1

2/𝑆2
2)

𝑠𝑒
 

where 

𝑠𝑒 = √
𝛾𝑃 − 𝑔1

𝑛1 − 1
+

𝛾𝑃 − 𝑔2

𝑛2 − 1
 

On the other hand, if the design is unbalanced then the p-value of the test is obtained as 

𝑃 = 2min (𝛼𝐿, 𝛼𝑈) 

where 𝛼𝐿 = Pr (𝑍 > 𝑧𝐿)  and 𝛼𝑈 = Pr (𝑍 > 𝑧𝑈). The variable 𝑧𝐿 is the smallest root of the function 

𝐿(𝑧, 𝑆1, 𝑆2, 𝑛1, 𝑛2) = ln
𝑛1

𝑛2
+ ln

𝑛2 − 𝑧

𝑛1 − 𝑧
− 𝑧 𝑠𝑒 + ln

𝑆1
2

𝑆2
2 − ln 𝜌𝑜

2 , 𝑧 < min(𝑛1, 𝑛2) 

and 𝑧𝑈 is the smallest root of the function 𝐿(𝑧, 𝑆2, 𝑆1, 𝑛2, 𝑛1). 

Method A2: Multiple comparison test and comparison 
intervals 
Suppose that there are 𝑘  (𝑘 ≥ 2)  independent groups or samples. Our objective was to 

construct a system of 𝑘 intervals for the population standard deviations such that the test of 

equality of the standard deviations is significant if, and only if, at least two of the 𝑘 intervals do 

not overlap. These intervals are referred to as comparison intervals. This method of comparison 

is similar to the procedures for multiple comparisons of the means in one-way ANOVA models, 

which were initially developed by Tukey-Kramer and later generalized by Hochberg, et al. (1982). 

Comparing two standard deviations 

For 2-sample designs, the confidence intervals of the ratio of standard deviations associated 

with the Bonett test can be calculated directly to assess the size of difference between the 

standard deviations (Banga and Fox, 2013A). In fact, we use this approach for Stat > Basic 

Statistics > 2 Variances in release 17 of Minitab. In the Assistant, however, we wanted to provide 

comparison intervals that are easier to interpret than the confidence interval of the ratio of 

standard deviations. To do this, we used the Bonett procedure described in Method A1to 

determine the comparison intervals for two samples. 

When there are two samples, the Bonett test of equality of variances is significant if, and only if, 

the following acceptance interval associated with the Bonett test of equality of variances does 

not contain 0. 

ln(𝑐1𝑆1
2) − ln(𝑐2𝑆2

2) ± 𝑧𝛼/2√
�̂�

𝑃
− 𝑔

1

𝑛1 − 1
+

�̂�
𝑃

− 𝑔
2

𝑛2 − 1
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where the pool kurtosis estimate 𝛾𝑃, and 𝑔𝑖, 𝑖 = 1,2 are as previously given. 

From this interval, we deduce the following two comparison intervals such that the test of 

equality of variances or standard deviation is significant if, and only if, they don’t overlap. These 

two intervals are 

[𝑆𝑖√Ciexp(−𝑧𝛼/2𝑉𝑖) , 𝑆𝑖√𝐶𝑖 exp(𝑧𝛼/2𝑉𝑖) ] , 𝑖 = 1,2 

where 

𝑉𝑖 =
√

𝛾𝑃 − 𝑔𝑖
𝑛𝑖 − 1

√
𝛾𝑃 − 𝑔𝑖
𝑛𝑖 − 1

+ √
𝛾𝑃 − 𝑔𝑗

𝑛𝑗 − 1

√
𝛾𝑃 − 𝑔𝑖

𝑛𝑖 − 1
+

𝛾𝑃 − 𝑔𝑗

𝑛𝑗 − 1
, 𝑖 = 1,2; 𝑗 = 1,2; 𝑖 ≠ 𝑗 

Using these intervals as a testing procedure of equality of the standard deviation is equivalent to 

the Bonett test of equality of standard deviations. Specifically, the intervals don’t overlap if, and 

only if, the Bonett test of equality of standard deviation is significant. Note, however, that these 

intervals are not confidence intervals of standard deviations, but are only appropriate for 

multiple comparisons of standard deviations. Hochberg et al. refer to similar intervals for 

comparing means as uncertainty intervals for the same reason. We refer to these intervals as 

comparison intervals. 

Because the comparison intervals procedure is equivalent to the Bonett test of equality of 

standard deviation, the p-value associated with the comparison intervals is identical to the p-

value of the Bonett test of equality of two standard deviations described earlier. 

Comparing multiple standard deviations 

When there are more than two groups or samples, the 𝑘 comparison intervals are deduced from 

𝑘(𝑘 − 1)/2 pairwise simultaneous tests of equality of standard deviations with family wise 

significance level 𝛼. More specifically, let 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖
 and 𝑋𝑗1, … , 𝑋𝑗𝑛𝑗

 be the sample data for any 

pair (𝑖, 𝑗) of samples. Similar to the 2-sample case, the test of equality of the standard deviations 

for the particular pair (𝑖, 𝑗) of samples is significant at some 𝛼′ level if, and only if, the interval 

ln(𝑐𝑖𝑆𝑖
2) − ln(𝑐𝑗𝑆𝑗

2) ± 𝑧𝛼′/2√
�̂�𝑖𝑗 − 𝑔𝑖

𝑛𝑖 − 1
+

𝛾𝑖𝑗 − 𝑔𝑗

𝑛𝑗 − 1
 

does not contain 0. In the above 𝛾𝑖𝑗 is the pooled kurtosis estimator based on the pair (𝑖, 𝑗) of 

samples and is given as  

𝛾𝑖𝑗 = (𝑛𝑖 + 𝑛𝑗)
∑ (𝑋𝑖𝑙 − 𝑚𝑖)4𝑛𝑖

𝑙=1 + ∑ (𝑋𝑗𝑙 − 𝑚𝑗)
4𝑛𝑗

𝑙=1

[(𝑛𝑖 − 1)𝑆𝑖
2 + (𝑛𝑗 − 1)𝑆𝑗

2]
2  

In addition, as previously defined, 𝑚𝑖 is the trimmed mean for sample 𝑖, with the trim 

proportion, 1/[2(𝑛𝑖 − 4)1/2] and 
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𝑔𝑖 =
𝑛𝑖 − 3

𝑛𝑖
 , 𝑔𝑗 =

𝑛𝑗 − 3

𝑛𝑗
 , 𝑐𝑖 =

𝑛𝑖

𝑛𝑖 − 𝑧𝛼′/2
, 𝑐𝑗 =

𝑛𝑗

𝑛𝑗 − 𝑧𝛼′/2
 

Because there are 𝑘(𝑘 − 1)/2  simultaneous pairwise tests, the level 𝛼′ must be chosen so that 

the actual family wise error rate is close to the target level of significance 𝛼. One possible 

adjustment is based on Bonferroni’s approximation.  However, Bonferroni corrections are well 

known to be increasingly conservative as the number of samples in the design increases. A 

better approach is based on a normal approximation given by Nakayama (2008). Using this 

approach we merely replace 𝑧𝛼′/2 with 𝑞𝛼,𝑘/√2 , where 𝑞𝛼,𝑘 is the upper 𝛼 point of the range of 

𝑘 independent and identically distributed standard normal random variables; that is  

Pr ( max
1≤𝑖<𝑗≤𝑘

|𝑍𝑖 − 𝑍𝑗| ≤ 𝑞𝛼,𝑘) = 1 − 𝛼 

where 𝑍1, … , 𝑍𝑘 are independent and identically distributed standard normal random variables. 

Furthermore, using a method similar to Hochberg et al. (1982), the procedure that best 

approximates the pairwise procedure described above, rejects the null hypothesis of the equality 

of standard deviations if, and only if, for some pair (𝑖, 𝑗) of samples 

|ln(𝑐𝑖𝑆𝑖
2) − ln(𝑐𝑗𝑆𝑗

2)| > 𝑞𝛼,𝑘(𝑉𝑖 + 𝑉𝑗)/√2 

where 𝑉𝑖 is chosen to minimize the quantity 

∑ ∑(𝑉𝑖 + 𝑉𝑗 − 𝑏𝑖𝑗)
2

𝑖≠𝑗

 

with 

𝑏𝑖𝑗 = √
𝛾𝑖𝑗 − 𝑔𝑖

𝑛𝑖 − 1
+

𝛾𝑖𝑗 − 𝑔𝑗

𝑛𝑗 − 1
 

The solution of this problem as illustrated in Hochberg et al. (1982) is to choose 

𝑉𝑖 =
(𝑘 − 1) ∑ 𝑏𝑖𝑗𝑗≠𝑖 − ∑ ∑ 𝑏𝑗𝑙1≤𝑗<𝑙≤𝑘

(𝑘 − 1)(𝑘 − 2)
 

It follows that the test based on the approximate procedure is significant if, and only if, at least 

one pair of the following 𝑘 intervals don’t overlap. 

[𝑆𝑖√Ciexp(−𝑞𝛼,𝑘𝑉𝑖/√2 ) , 𝑆𝑖√𝐶𝑖 exp(𝑞𝛼,𝑘𝑉𝑖/√2) ] , 𝑖 = 1, … , 𝑘 

To calculate the overall p-value associated with the MC test, we let 𝑃𝑖𝑗 be the p-value associated 

with any pair (𝑖, 𝑗) of samples. It follows then that the overall p-value associated with the 

multiple comparison test is  

𝑃 = min{ 𝑃𝑖𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘} 

To calculate 𝑃𝑖𝑗 we perform the algorithm of the 2-sample design given in Method A1 using   

𝑠𝑒 = 𝑉𝑖 + 𝑉𝑗 
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where 𝑉𝑖 is as given above.  

More specifically, if  𝑛𝑖 ≠ 𝑛𝑗 

𝑃𝑖𝑗 = min(𝛼𝐿 , 𝛼𝑈) 

where 𝛼𝐿 = Pr (𝑄 > 𝑧𝐿√2) , 𝛼𝑈 = Pr (𝑄 > 𝑧𝑈√2), the variable 𝑧𝐿 is the smallest root of the 

function 𝐿(𝑧, 𝑆𝑖, 𝑆𝑗, 𝑛𝑖, 𝑛𝑗), the variable 𝑧𝑈 is the smallest root of the function 𝐿(𝑧, 𝑆𝑗, 𝑆𝑖, 𝑛𝑗, 𝑛𝑖) and 

𝑄 is a random variable which has the range distribution as previously defined. 

If 𝑛𝑖 = 𝑛𝑗 then 𝑃𝑖𝑗 = Pr (𝑄 > |𝑧𝑜|√2) where 

𝑧𝑜 =
ln 𝑆𝑖

2 − ln 𝑆𝑗
2

𝑉𝑖 + 𝑉𝑗
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Appendix B: Validity of 

Bonett test and the 

Multiple comparison test 

Simulation B1: Validity of Bonett Test (2-sample 
models, balanced and unbalanced designs) 
We generated pairs of random samples that are small to moderate in size from distributions 

with different properties. The distributions included: 

 Standard normal distribution (N(0,1)) 

 Symmetric and light-tailed distributions, including the uniform distribution (U(0,1)) and 

the Beta distribution with both parameters set to 3 (B(3,3)) 

 Symmetric and heavy-tailed distributions, including t distributions with 5 and 10 degrees 

of freedom (t(5),t(10)), and the Laplace distribution with location 0 and scale 1 (Lpl)) 

 Skewed and heavy-tailed distributions, including the exponential distribution with scale 1 

(Exp) and chi-square distributions with 5 and 10 degrees of freedom (Chi(5), Chi(10)) 

 Left-skewed and heavy-tailed distribution; specifically, the Beta distribution with the 

parameters set to 8 and 1, respectively (B(8,1)) 

In addition, to assess the direct effect of outliers, we generated pairs of samples from 

contaminated normal distributions defined as 

𝐶𝑁(𝑝, 𝜎) = 𝑝𝑁(0,1) + (1 − 𝑝)𝑁(0, 𝜎) 

where 𝑝 is the mixing parameter and  1 − 𝑝 is the proportion of contamination (which equals the 

proportion of outliers). We selected two contaminated normal populations for the study: 

𝐶𝑁(0.9,3), where 10% of the population are outliers; and 𝐶𝑁(0.8,3), where 20% of the 

population are outliers. These two distributions are symmetric and have long tails due to the 

outliers. 

We performed a two-sided Bonett test with a target significance level of 𝛼 = 0.05 on each pair 

of samples from each distribution. Because the simulated significance levels were, in each case, 

based upon 10,000 pairs of samples replicates, and because we used a target significance level 

of 5%, the simulation error was √0.95(0.05)/10,000 = 0.2%. 

The simulation results are summarized in Table 1 below. 
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Table 1  Simulated significance levels for a two-sided Bonett test in balanced and unbalanced  

2-sample designs. The target level of significance is 0.05. 

Distribution 𝒏𝟏, 𝒏𝟐 Simulated level Distribution 𝒏𝟏, 𝒏𝟐 Simulated level 

N(0,1) 10, 10 0.038 Exp 10, 10 0.052 

20, 10 0.043 20, 10 0.051 

20, 20 0.045 20, 20 0.049 

30, 10 0.044 30, 10 0.044 

30, 20 0.046 30, 20 0.042 

25, 25 0.048 25, 25 0.043 

30, 30 0.048 30, 30 0.042 

40, 40 0.051 40, 40 0.042 

50, 50 0.047 50, 50 0.039 

t(5) 10, 10 0.044 Chi(5) 10, 10 0.040 

20, 10 0.042 20, 10 0.043 

20, 20 0.046 20, 20 0.040 

30, 10 0.041 30, 10 0.039 

30, 20 0.046 30, 20 0.043 

25, 25 0.048 25, 25 0.042 

30, 30 0.043 30, 30 0.043 

40, 40 0.046 40, 40 0.040 

50, 50 0.050 50, 50 0.039 
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Distribution 𝒏𝟏, 𝒏𝟐 Simulated level Distribution 𝒏𝟏, 𝒏𝟐 Simulated level 

t(10) 10, 10 0.041 Chi(10) 10, 10 0.044 

20, 10 0.040 20, 10 0.042 

20, 20 0.045 20, 20 0.041 

30, 10 0.046 30, 10 0.043 

30, 20 0.045 30, 20 0.045 

25, 25 0.046 25, 25 0.046 

30, 30 0.048 30, 30 0.038 

40, 40 0.045 40, 40 0.042 

50, 50 0.051 50, 50 0.049 

Lpl 10, 10 0.054 B(8,1) 10, 10 0.053 

20, 10 0.056 20, 10 0.045 

20, 20 0.055 20, 20 0.048 

30, 10 0.057 30, 10 0.042 

30, 20 0.058 30, 20 0.047 

25, 25 0.057 25, 25 0.041 

30, 30 0.053 30, 30 0.040 

40, 40 0.047 40, 40 0.042 

50, 50 0.048 50, 50 0.038 
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Distribution 𝒏𝟏, 𝒏𝟐 Simulated level Distribution 𝒏𝟏, 𝒏𝟐 Simulated level 

B(3,3) 10, 10 0.032 CN(0.9,3) 10, 10 0.024 

20, 10 0.037 20, 10 0.022 

20, 20 0.042 20, 20 0.018 

30, 10 0.039 30, 10 0.019 

30, 20 0.038 30, 20 0.020 

25, 25 0.039 25, 25 0.019 

30, 30 0.041 30, 30 0.015 

40, 40 0.044 40, 40 0.020 

50, 50 0.046 50, 50 0.017 

U(0,1) 10, 10 0.030 CN(0.8,3) 10, 10 0.022 

20, 10 0.032 20, 10 0.019 

20, 20 0.031 20, 20 0.020 

30, 10 0.034 30, 10 0.017 

30, 20 0.034 30, 20 0.020 

25, 25 0.034 25, 25 0.021 

30, 30 0.037 30, 30 0.017 

40, 40 0.043 40, 40 0.023 

50, 50 0.043 50, 50 0.020 

 

As shown Table 1, when the sample sizes are smaller, the simulated significance levels of the 

Bonett test are lower than the target level of significance (0.05) for symmetric or nearly 

symmetric distributions with light to moderate tails. On the other hand, the simulated levels 

tend to a bit larger than the targeted level when small samples originate from highly skewed 

distributions.  

When the samples are moderately large or large in size, the simulated significance levels are 

close to the target level for all the distributions. In fact, the test performs reasonably well even 

for highly skewed distributions, such as the exponential distribution and the Beta(8,1) 

distribution. 
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In addition, outliers appear to have more impact in small samples than in large samples. The 

simulated significance levels for the contaminated normal populations stabilized at 

approximately 0.020 when the minimum size of the two samples reached 20. 

When the minimum size of the two samples is 20, the simulated significance levels consistently 

fall within the interval [0.038, 0.058], except for the flat uniform distribution and contaminated 

normal distributions. Although a simulated significance level of 0.040 is slightly conservative for 

a target level of 0.05, this Type I error rate may be acceptable for most practical purposes. 

Therefore, we conclude that the Bonett test is valid when the minimum size of the two samples 

is at least 20. 

Simulation B2: Validity of the MC test (multiple-
sample models) 

Part I: Balanced designs 

We performed a simulation to examine the performance of the MC test in multiple-sample 

models with balanced designs. We generated 𝑘 samples of equal size from the same 

distribution, using the set of distributions previously listed in simulation B1. We selected the 

number of samples in a design to be 𝑘 = 3, 𝑘 = 4, and 𝑘 = 6 and fixed the size of the 𝑘 samples 

in each experiment at 10, 15, 20, 25, 50, and 100.  

We performed a two-sided MC test with a target significance level of 𝛼 = 0.05 on the same 

samples of each design case. Because the simulated significance levels were, in each case, based 

upon 10,000 pairs of sample replicates, and because we used a target significance level of 5%, 

the simulation error was √0.95(0.05)/10,000 = 0.2%. 

The simulation results are summarized in Tables 2a and 2b below. 

Table 2a  Simulated significance levels for a two-sided multiple comparison test in balanced, 

multi-sample designs. The target level of significance for the test is 0.05. 

Distribution 

𝒌 = 𝟑 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 

𝒌 = 𝟒 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 = 𝒏𝟒 

𝒌 = 𝟔 

𝒏𝟏 = 𝒏𝟐 = ⋯ = 𝒏𝟔 

𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 

N(0,1) 10 0.038 10 0.038 10 0.036 

15 0.040 15 0.041 15 0.039 

20 0.039 20 0.040 20 0.041 

25 0.045 25 0.047 25 0.047 

50 0.046 50 0.046 50 0.052 
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Distribution 

𝒌 = 𝟑 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 

𝒌 = 𝟒 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 = 𝒏𝟒 

𝒌 = 𝟔 

𝒏𝟏 = 𝒏𝟐 = ⋯ = 𝒏𝟔 

𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 

100 0.049 100 0.049 100 0.052 

t(5) 10 0.042 10 0.044 10 0.042 

15 0.041 15 0.044 15 0.046 

20 0.043 20 0.045 20 0.045 

25 0.046 25 0.048 25 0.046 

50 0.040 50 0.039 50 0.038 

100 0.038 100 0.040 100 0.040 

T(10) 10 0.033 10 0.037 10 0.038 

15 0.040 15 0.042 15 0.041 

20 0.042 20 0.043 20 0.043 

25 0.041 25 0.042 25 0.045 

50 0.047 50 0.044 50 0.047 

100 0.048 100 0.046 100 0.047 

Lpl 10 0.056 10 0.063 10 0.071 

15 0.056 15 0.061 15 0.063 

20 0.054 20 0.058 20 0.059 

25 0.051 25 0.056 25 0.58 

50 0.045 50 0.051 50 0.049 

100 0.044 100 0.047 100 0.050 

B(3,3) 10 0.031 10 0.031 10 0.031 

15 0.037 15 0.036 15 0.034 

20 0.035 20 0.036 20 0.037 

25 0.039 25 0.038 25 0.040 

50 0.044 50 0.044 50 0.044 
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Distribution 

𝒌 = 𝟑 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 

𝒌 = 𝟒 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 = 𝒏𝟒 

𝒌 = 𝟔 

𝒏𝟏 = 𝒏𝟐 = ⋯ = 𝒏𝟔 

𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 

100 0.044 100 0.046 100 0.043 

U(0,1) 10 0.029 10 0.025 10 0.023 

15 0.026 15 0.027 15 0.026 

20 0.028 20 0.030 20 0.028 

25 0.034 25 0.033 25 0.032 

50 0.041 50 0.036 50 0.036 

100 0.048 100 0.047 100 0.045 

Exp 10 0.063 10 0.073 10 0.076 

15 0.056 15 0.058 15 0.064 

20 0.051 20 0.053 20 0.057 

25 0.043 25 0.045 25 0.050 

50 0.033 50 0.037 50 0.038 

100 0.033 100 0.035 100 0.035 

 

Table 2b  Simulated significance levels for a two-sided multiple comparison test in balanced, 

multi-sample designs. The target level of significance for the test is 0.05. 

Distribution 

𝒌 = 𝟑 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 

𝒌 = 𝟒 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 = 𝒏𝟒 

𝒌 = 𝟔 

𝒏𝟏 = 𝒏𝟐 = ⋯ = 𝒏𝟔 

𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 

Chi(5) 10 0.040 10 0.046 10 0.048 

15 0.043 15 0.046 15 0.049 

20 0.040 20 0.040 20 0.042 

25 0.040 25 0.045 25 0.042 

50 0.037 50 0.038 50 0.040 

100 0.036 100 0.037 100 0.038 



 

TESTS FOR STANDARD DEVIATIONS (TWO OR MORE SAMPLES) 25 

Distribution 

𝒌 = 𝟑 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 

𝒌 = 𝟒 

𝒏𝟏 = 𝒏𝟐 = 𝒏𝟑 = 𝒏𝟒 

𝒌 = 𝟔 

𝒏𝟏 = 𝒏𝟐 = ⋯ = 𝒏𝟔 

𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 𝒏𝒊 Simulated level 

Chi(10) 10 0.042 10 0.045 10 0.045 

15 0.038 15 0.044 15 0.047 

20 0.036 20 0.039 20 0.040 

25 0.043 25 0.044 25 0.045 

50 0.041 50 0.040 50 0.042 

100 0.038 100 0.040 100 0.042 

B(8,1) 10 0.058 10 0.060 10 0.066 

15 0.057 15 0.061 15 0.064 

20 0.049 20 0.051 20 0.055 

25 0.044 25 0.046 25 0.050 

50 0.037 50 0.037 50 0.039 

100 0.037 100 0.038 100 0.039 

CN(0.9,3) 10 0.020 10 0.018 10 0.016 

15 0.022 15 0.020 15 0.017 

20 0.014 20 0.012 20 0.008 

25 0.011 25 0.011 25 0.008 

50 0.009 50 0.007 50 0.006 

100 0.010 100 0.008 100 0.008 

CN(0.8, 3) 10 0.017 10 0.015 10 0.011 

15 0.013 15 0.011 15 0.008 

20 0.012 20 0.012 20 0.009 

25 0.013 25 0.010 25 0.009 

50 0.011 50 0.011 50 0.009 

100 0.014 100 0.012 100 0.010 
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As shown in Tables 2a and 2b, when the sample size is small, the MC test is generally 

conservative for symmetric and nearly symmetric distributions in balanced designs. On the other 

hand, the test is liberal for small samples obtained from highly skewed distributions such as the 

exponential and the beta(8, 1) distributions. As the sample size increases, however, the 

simulated significance levels approach the target significance level (0.05). In addition, the 

number of samples does not appear to have a strong effect on the performance of the test for 

samples that are moderate in sizes. When the data is contaminated with outliers, however, there 

is a remarkable impact on the performance of the test. The test is consistently and excessively 

conservative when outliers are present in the data. 

Part II: Unbalanced designs 

We performed a simulation to examine the performance of the MC test in unbalanced designs. 

We generated 3 samples from the same distribution, using the set of distributions previously 

described in Simulation B1. In the first set of experiments, the size of the first two samples was 

𝑛1 = 𝑛2 = 10 and size of the third sample was 𝑛3 = 15, 20, 25, 50, 100. In the second set of 

experiments, the size of the first two samples was 𝑛1 = 𝑛2 = 15 and the size of the third set of 

samples was 𝑛3 = 20, 25, 30, 50, 100. In the third set of experiments, we set the minimum sample 

size at 20, with the size of the first two samples at  𝑛1 = 𝑛2 = 20 and the size of the third sample 

at 𝑛3 = 25, 30, 40, 50, 100. 

We performed a two-sided MC test with a target significance level of 𝛼 = 0.05 on the same 

three samples from each distribution. Because the simulated significance levels were, in each 

case, based upon 10,000 pairs of samples replicates, and because we used a target significance 

level of 5%, the simulation error was √0.95(0.05)/10,000 = 0.2%. 

The simulation results are summarized in Tables 3a and 3b below. 

Table 3a  Simulated significance levels for the multiple comparison test in multi-sample, 

unbalanced designs. The target level of significance of the test is 0.05. 

Distribution 

𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟓 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟎 

𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 

N(0,1) 15 0.032 20 0.040 25 0.045 

20 0.037 25 0.039 30 0.041 

25 0.038 30 0.037 40 0.043 

50 0.041 50 0.044 50 0.041 

100 0.042 100 0.042 100 0.044 
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Distribution 

𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟓 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟎 

𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 

t(5) 15 0.040 20 0.042 25 0.043 

20 0.036 25 0.040 30 0.037 

25 0.044 30 0.036 40 0.038 

50 0.033 50 0.036 50 0.035 

100 0.032 100 0.031 100 0.032 

t(10) 15 0.039 20 0.042 25 0.042 

20 0.038 25 0.041 30 0.040 

25 0.040 30 0.041 40 0.041 

50 0.037 50 0.043 50 0.042 

100 0.036 100 0.039 100 0.040 

Lpl 15 0.059 20 0.060 25 0.054 

20 0.057 25 0.054 30 0.051 

25 0.056 30 0.051 40 0.050 

50 0.049 50 0.051 50 0.050 

100 0.048 100 0.047 100 0.046 

B(3,3) 15 0.034 20 0.033 25 0.037 

20 0.031 25 0.035 30 0.039 

25 0.031 30 0.034 40 0.039 

50 0.036 50 0.039 50 0.038 

100 0.035 100 0.039 100 0.039 

U(0,1) 15 0.027 20 0.030 25 0.032 

20 0.030 25 0.030 30 0.031 

25 0.028 30 0.032 40 0.036 

50 0.039 50 0.034 50 0.037 

100 0.042 100 0.038 100 0.042 
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Distribution 

𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟓 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟎 

𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 

Exp 15 0.061 20 0.053 25 0.042 

20 0.060 25 0.052 30 0.047 

25 0.054 30 0.049 40 0.043 

50 0.050 50 0.046 50 0.041 

100 0.044 100 0.040 100 0.040 

 

Table 3b  Simulated significance levels for the MC test in multi-sample, unbalanced designs. The 

target level of significance of the test is 0.05. 

Distribution 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟓 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟎 

𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 

Chi(5) 15 0.047 20 0.045 25 0.041 

20 0.043 25 0.042 30 0.039 

25 0.043 30 0.039 40 0.040 

50 0.039 50 0.037 50 0.040 

100 0.034 100 0.035 100 0.034 

Chi(10) 15 0.043 20 0.042 25 0.042 

20 0.039 25 0.038 30 0.041 

25 0.040 30 0.041 40 0.038 

50 0.038 50 0.041 50 0.042 

100 0.035 100 0.034 100 0.035 

B(8,1) 15 0.056 20 0.052 25 0.048 

20 0.054 25 0.046 30 0.044 

25 0.050 30 0.047 40 0.046 

50 0.046 50 0.043 50 0.043 

100 0.043 100 0.042 100 0.044 

CN(0.9,3) 15 0.017 20 0.020 25 0.017 
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Distribution 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟓 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟎 

𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 𝒏𝟑 Simulated level 

20 0.020 25 0.019 30 0.012 

25 0.017 30 0.016 40 0.013 

50 0.019 50 0.016 50 0.012 

100 0.014 100 0.016 100 0.010 

CN(0.8, 3) 15 0.012 20 0.013 25 0.013 

20 0.016 25 0.012 30 0.012 

25 0.014 30 0.010 40 0.010 

50 0.015 50 0.010 50 0.013 

100 0.012 100 0.011 100 0.010 

 

The simulated significance levels shown in Tables 3a and 3b are consistent with those reported 

previously for multiple samples with balanced designs. Therefore, the performance of the MC 

test does not appear to be affected by unbalanced designs. In addition, when the minimum 

sample size is at least 20, then the simulated levels of significance are close to the target level, 

except for contaminated data.  

In conclusion, when the smallest sample is at least 20, the MC test performs well for multiple (k) 

samples in both balanced and unbalanced designs. For smaller samples, however, the test is 

conservative for symmetric and nearly symmetric data and liberal for highly skewed data.  
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Appendix C: Theoretical power 
function 
The exact theoretical power function of the MC test is not available. However, for 2-sample 

designs, an approximate power function based on large-sample theory methods can be 

obtained. For multiple-sample designs, more research efforts are required to derive a similar 

approximation.  

For 2-sample designs, however, the theoretical power function of the Bonett test can be 

obtained using large-sample theory methods. More specifically, the test statistic, 𝑇, given below 

is asymptotically distributed as a chi-square distribution with 1 degree freedom: 

𝑇 =
(ln �̂�2 − ln 𝜌2)2

𝛾 − 𝑔1
𝑛1 − 1

+
𝛾 − 𝑔2
𝑛2 − 1

 

In this expression of 𝑇, �̂� = 𝑆1/𝑆2, 𝜌 = 𝜎1/𝜎2, 𝑔𝑖 = (𝑛𝑖 − 3)/𝑛𝑖, and 𝛾 is the unknown common 

kurtosis of the two populations. 

It follows then that the theoretical power function of a two-sided Bonett test of equality of 

variances with an approximate level of significance 𝛼 may be given as 

𝜋(𝑛1, 𝑛2, 𝜌) = 1 − 𝛷 (𝑧𝛼/2 −
ln 𝜌2

𝑠𝑒
) + 𝛷 (−𝑧𝛼/2 −

ln 𝜌2

𝑠𝑒
) 

where 

𝑠𝑒 = √
𝛾 − 𝑔1

𝑛1 − 1
+

𝛾 − 𝑔2

𝑛2 − 1
 

For one-sided tests, the approximate power function when testing against 𝜎1 > 𝜎2 is 

𝜋(𝑛1, 𝑛2, 𝜌) = 1 − 𝛷 (𝑧𝛼/2 −
ln 𝜌2

𝑠𝑒
) 

and when testing against 𝜎1 < 𝜎2, the approximate power function is 

𝜋(𝑛1, 𝑛2, 𝜌) = 𝛷 (−𝑧𝛼/2 −
ln 𝜌2

𝑠𝑒
) 
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Note that during the planning of sample size phase of the data analysis, the common kurtosis of 

the populations, 𝛾, is unknown. Therefore, the investigator typically must rely upon the opinions 

of experts or the results of previous experiments to obtain a planning value for 𝛾. If that 

information is not available, it is often a good practice to perform a small pilot study to develop 

the plans for the major study. Using the samples from the pilot study, a planning value of 𝛾 is 

obtained as the pooled kurtosis given by  

𝛾𝑃 = (𝑛1 + 𝑛2)
∑ (𝑋1𝑗 − 𝑚1)

4𝑛1
𝑗=1 + ∑ (𝑋2𝑗 − 𝑚2)

4𝑛2
𝑗=1

[(𝑛1 − 1)𝑆1
2 + (𝑛2 − 1)𝑆2

2]2
 

In the Assistant Menu, the planning estimate of 𝛾 is obtained retrospectively based on the user’s 

data at hand. 
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Appendix D: Comparison of 
theoretical and simulated power 

Simulation D1: Simulated (actual) power of the Bonett 
test 
We performed a simulation to compare the simulated power levels of the Bonett test to the 

power levels based upon the approximate power function derived in Appendix C.  

We generated 10,000 pairs of samples for each of the distributions described previously (see 

Simulation B1). In general, the selected sample sizes were large enough for the simulated 

significance level of the test to be reasonably close to the target significance level, based on our 

previous results in Simulation B1.  

To evaluate the simulated power levels at a ratio of standard deviations 𝜌 = 𝜎1/𝜎2 = 1/2, we 

multiplied the second sample in every pair of samples by the constant 2. As a result, for a given 

distribution and for given sample sizes 𝑛1 and 𝑛2, the simulated power level was calculated as 

the fraction of the 10,000 pairs of samples replicates for which the two-sided Bonett test was 

significant. The target significance level of the test was fixed at 𝛼 = 0.05. For comparison, we 

calculated the corresponding theoretical power levels based on the approximate power function 

derived in Appendix C.  

The results are shown in Tables 4 below. 

Table 4  Comparison of simulated power levels to approximate power levels of a two-sided 

Bonett test. The target significance level is 0.05. 

Distribution 𝒏𝟏, 𝒏𝟐 App. 

Power 

Simulated 

Power 

Distribution 𝒏𝟏, 𝒏𝟐 App. 

Power 

Simulated 

Power 

N(0,1) 20, 10 0.627 0.527 Exp 20, 10 0.222 0.227 

20, 20 0.830 0.765 20, 20 0.322 0.368 

20, 30 0.896 0.846 20, 30 0.377 0.434 

20, 40 0.925 0.886 20, 40 0.412 0.475 

30, 15 0.825 0.771 30, 15 0.320 0.307 

30, 30 0.954 0.925 30, 30 0.458 0.500 

30, 45 0.980 0.970 30, 45 0.531 0.579 
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Distribution 𝒏𝟏, 𝒏𝟐 App. 

Power 

Simulated 

Power 

Distribution 𝒏𝟏, 𝒏𝟐 App. 

Power 

Simulated 

Power 

30, 60 0.989 0.984 30, 60 0.575 0.622 

t(5) 20, 10 0.222 0.379 Chi(5) 20, 10 0.355 0.347 

20, 20 0.322 0.569 20, 20 0.517 0.530 

20, 30 0.377 0.637 20, 30 0.597 0.616 

20, 40 0.412 0.690 20, 40 0.644 0.661 

30, 15 0.320 0.545 30, 15 0.513 0.510 

30, 30 0.458 0.733 30, 30 0.701 0.711 

30, 45 0.531 0.795 30, 45 0.781 0.793 

30, 60 0.575 0.828 30, 60 0.823 0.833 

t(10) 20, 10 0.476 0.450 Chi(10) 20, 10 0.454 0.414 

20, 20 0.673 0.673 20, 20 0.646 0.631 

20, 30 0.756 0.749 20, 30 0.730 0.717 

20, 40 0.800 0.803 20, 40 0.776 0.771 

30, 15 0.668 0.659 30, 15 0.641 0.618 

30, 30 0.850 0.852 30, 30 0.828 0.819 

30, 45 0.910 0.911 30, 45 0.892 0.882 

30, 60 0.936 0.937 30, 60 0.921 0.912 

Lpl 20, 10 0.321 0.330 B(8,1) 20, 10 0.363 0.278 

20, 20 0.469 0.519 20, 20 0.528 0.463 

20, 30 0.545 0.585 20, 30 0.609 0.549 

20, 40 0.590 0.632 20, 40 0.655 0.600 

30, 15 0.466 0.475 30, 15 0.524 0.419 

30, 30 0.647 0.673 30, 30 0.713 0.634 

30, 45 0.729 0.758 30, 45 0.792 0.737 

30, 60 0.773 0.800 30, 60 0.833 0.777 
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Distribution 𝒏𝟏, 𝒏𝟐 App. 

Power 

Simulated 

Power 

Distribution 𝒏𝟏, 𝒏𝟐 App. 

Power 

Simulated 

Power 

B(3,3) 20, 10 0.777 0.628 CN(0.9,3) 20, 10 0.238 0.284 

20, 20 0.939 0.869 20, 20 0.346 0.452 

20, 30 0.973 0.936 20, 30 0.405 0.517 

20, 40 0.984 0.964 20, 40 0.442 0.561 

30, 15 0.935 0.871 30, 15 0.343 0.374 

30, 30 0.993 0.980 30, 30 0.491 0.598 

30, 45 0.998 0.995 30, 45 0.567 0.700 

30, 60 0.999 0.999 30, 60 0.612 0.719 

U(0,1) 20, 10 0.916 0.740 CN(0.8,3) 20, 10 0.260 0.223 

20, 20 0.992 0.950 20, 20 0.379 0.396 

20, 30 0.998 0.985 20, 30 0.444 0.467 

20, 40 0.999 0.995 20, 40 0.484 0.520 

30, 15 0.991 0.941 30, 15 0.376 0.354 

30, 30 1.0 0.996 30, 30 0.535 0.549 

30, 45 1.0 1.0 30, 45 0.614 0.650 

30, 60 1.0 1.0 30, 60 0.661 0.706 

 

The results show that, in general, the approximate power levels and the simulated power levels 

are close to each other. They become closer as the samples sizes increase. The approximate 

power levels are usually slightly larger than the simulated power levels for symmetric and nearly 

symmetric distributions with moderate to light tails. They are, however, slightly smaller than the 

simulated power levels for symmetric distributions with heavy tails or for highly skewed 

distributions. The difference between the two power functions is usually not important, except in 

the case where the samples are generated from the t distribution with 5 degrees of freedom. 

Overall, when the minimum sample size reaches 20, the approximate power levels and the 

simulated power levels are remarkably close. Therefore, the planning of sample sizes can be 

based upon the approximate power functions. 
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