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This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

Simple Regression 

Overview 
The simple regression procedure in the Assistant fits linear and quadratic models with one 

continuous predictor (X) and one continuous response (Y) using least squares estimation. The 

user can select the model type or allow the Assistant to select the best fitting model. In this 

paper, we explain the criteria the Assistant uses to select the regression model. 

Additionally, we examine several factors that are important to obtain a valid regression model. 

First, the sample must be large enough to provide enough power for the test and to provide 

enough precision for the estimate of the strength of the relationship between X and Y. Next, it is 

important to identify unusual data that may affect the results of the analysis. We also consider 

the assumption that the error term follows a normal distribution and evaluate the impact of 

nonnormality on the hypothesis tests of the overall model and the coefficients. Finally, to ensure 

that the model is useful, it is important that the type of model selected accurately reflects the 

relationship between X and Y. 

Based on these factors, the Assistant automatically performs the following checks on your data 

and reports the findings in the Report Card: 

 Amount of data 

 Unusual data 

 Normality 

 Model fit 

In this paper, we investigate how these factors relate to regression analysis in practice and we 

describe how we established the guidelines to check for these factors in the Assistant. 
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Regression methods 

Model selection 
Regression analysis in the Assistant fits a model with one continuous predictor and one 

continuous response and can fit two types of models: 

 Linear: 𝐹(𝑥) =  𝛽0 + 𝛽1𝑋 

 Quadratic: 𝐹(𝑥) =  𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 

The user can select the model before performing the analysis or can allow the Assistant to select 

the model. There are several methods that can be used to determine which model is most 

appropriate for the data. To ensure that the model is useful, it is important that the type of 

model selected accurately reflects the relationship between X and Y. 

Objective 

We wanted to examine the different methods that can be used for model selection to determine 

which one to use in the Assistant. 

Method 

We examined three methods that are typically used for model selection (Neter et al., 1996). The 

first method identifies the model in which the highest order term is significant. The second 

method selects the model with the highest 𝑅𝑎𝑑𝑗
2  value. The third method selects the model in 

which the overall F-test is significant. For more details, see Appendix A. 

To determine the approach in the Assistant, we examined the methods and compared their 

calculations to one another. We also gathered feedback from experts in quality analysis. 

Results 

Based on our research, we decided to use the method that selects the model based on the 

statistical significance of the highest order term in the model. The Assistant first examines the 

quadratic model and tests whether the square term (𝛽2) in the model is statistically significant. If 

that term is not significant, then it drops the quadratic term from the model and tests the linear 

term (𝛽1). The model selected through this approach is presented in the Model Selection Report. 

Additionally, if the user selected a model that is different than the one selected by the Assistant, 

we report that in the Model Selection Report and the Report Card. 

We chose this method in part because of feedback from quality professionals who said they 

generally prefer simpler models, which exclude terms that are not significant. Additionally, based 

on our comparison of the methods, using the statistical significance of the highest term in the 

model is more stringent than the method that selects the model based on the highest 𝑅𝑎𝑑𝑗
2  

value. For more details, see Appendix A. 
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Although we use the statistical significance of highest model term to select the model, we also 

present the 𝑅𝑎𝑑𝑗
2  value and the overall F-test for the model in the Model Selection Report. To see 

the status indicators presented in the Report Card, see the Model fit data check section below. 



 

SIMPLE REGRESSION 4 

Data checks 

Amount of data 
Power is concerned with how likely a hypothesis test is to reject the null hypothesis, when it is 

false. For regression, the null hypothesis states that there is no relationship between X and Y. If 

the data set is too small, the power of the test may not be adequate to detect a relationship 

between X and Y that actually exists. Therefore, the data set should be large enough to detect a 

practically important relationship with high probability. 

Objective 

We wanted to determine how the amount of data affects the power of the overall F-test of the 

relationship between X and Y and the precision of 𝑅𝑎𝑑𝑗
2 , the estimate of the strength of the 

relationship between X and Y. This information is critical to determine whether the data set is 

large enough to trust that the strength of the relationship observed in the data is a reliable 

indicator of the true underlying strength of the relationship. For more information on 𝑅𝑎𝑑𝑗
2 , see 

Appendix A. 

Method 

To examine the power of the overall F-test, we performed power calculations for a range of 𝑅𝑎𝑑𝑗
2  

values and sample sizes. To examine the precision of 𝑅𝑎𝑑𝑗
2 , we simulated the distribution of 𝑅𝑎𝑑𝑗

2  

for different values of the population adjusted 𝑅2 (𝜌𝑎𝑑𝑗
2 ) and different sample sizes. We 

examined the variability in 𝑅𝑎𝑑𝑗
2  values to determine how large the sample should be so that 

𝑅𝑎𝑑𝑗
2  is close to 𝜌𝑎𝑑𝑗

2 . For more information on the calculations and simulations, see Appendix B. 

Results 

We found that for moderately large samples, regression has good power to detect relationships 

between X and Y, even if the relationships are not strong enough to be of practical interest. 

More specifically, we found that: 

 With a sample size of 15 and a strong relationship between X and Y (𝜌𝑎𝑑𝑗 
2 = 0.65), the 

probability of finding a statistically significant linear relationship is 0.9969. Therefore, 

when the test fails to find a statistically significant relationship with 15 or more data 

points, it is likely that the true relationship is not very strong (𝜌𝑎𝑑𝑗 
2 value < 0.65). 

 With a sample size of 40 and a moderately weak relationship between X and Y (𝜌𝑎𝑑𝑗 
2 = 

0.25), the probability of finding a statistically significant linear relationship is 

0.9398.Therefore, with 40 data points, the F-test is likely to find relationships between X 

and Y even when the relationship is moderately weak. 
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Regression can detect relationships between X and Y fairly easily. Therefore, if you find a 

statistically significant relationship, you should also evaluate the strength of the relationship 

using 𝑅𝑎𝑑𝑗
2 . We found that if the sample size is not large enough, 𝑅𝑎𝑑𝑗

2  is not very reliable and 

can vary widely from sample to sample. However, with a sample size of 40 or more, we found 

that 𝑅𝑎𝑑𝑗
2  values are more stable and reliable. With a sample size of 40, you can be 90% 

confident that observed value of 𝑅𝑎𝑑𝑗
2 will be within 0.20 of 𝜌𝑎𝑑𝑗 

2  regardless of the actual value 

and the model type (linear or quadratic). For more detail on the results of the simulations, see 

Appendix B. 

Based on these results, the Assistant displays the following information in the Report Card when 

checking the amount of data: 

Status Condition 

 

Sample size < 40 

Your sample size is not large enough to provide a very precise estimate of the strength of the 
relationship. Measures of the strength of the relationship, such as R-Squared and R-Squared 
(adjusted), can vary a great deal. To obtain a more precise estimate, larger samples (typically 40 or 
more) should be used. 

Sample size > =40 

Your sample is large enough to obtain a precise estimate of the strength of the relationship.  

Unusual data 
In the Assistant Regression procedure, we define unusual data as observations with large 

standardized residuals or large leverage values. These measures are typically used to identify 

unusual data in regression analysis (Neter et al., 1996). Because unusual data can have a strong 

influence on the results, you may need to correct the data to make the analysis valid. However, 

unusual data can also result from the natural variation in the process. Therefore, it is important 

to identify the cause of the unusual behavior to determine how to handle such data points. 

Objective 

We wanted to determine how large the standardized residuals and leverage values need to be 

to signal that a data point is unusual. 

Method 

We developed our guidelines for identifying unusual observations based on the standard 

Regression procedure in Minitab (Stat > Regression > Regression). 
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Results 

STANDARDIZED RESIDUAL 

The standardized residual equals the value of a residual, 𝑒𝑖, divided by an estimate of its 

standard deviation. In general, an observation is considered unusual if the absolute value of the 

standardized residual is greater than 2. However, this guideline is somewhat conservative. You 

would expect approximately 5% of all observations to meet this criterion by chance (if the errors 

are normally distributed). Therefore, it is important to investigate the cause of the unusual 

behavior to determine if an observation truly is unusual. 

LEVERAGE VALUE 

Leverage values are related only to the X value of an observation and do not depend on the Y 

value. An observation is determined to be unusual if the leverage value is more than 3 times the 

number of model coefficients (p) divided by the number of observations (n). Again, this is a 

commonly used cut-off value, although some textbooks use 
2 × 𝑝

𝑛
 (Neter et al., 1996). 

If your data include any high leverage points, consider whether they have undue influence over 

the type of model selected to fit the data. For example, a single extreme X value could result in 

the selection of a quadratic model instead of a linear model. You should consider whether the 

observed curvature in the quadratic model is consistent with your understanding of the process. 

If it is not, fit a simpler model to the data or gather additional data to more thoroughly 

investigate the process. 

When checking for unusual data, the Assistant Report Card displays the following status 

indicators: 

Status Condition 

 

There are no unusual data points. Unusual data points can have a strong influence on the results. 

 

There are at least one or more large standardized residuals or at least one or more high leverage 
values. 

Because unusual data can have a strong influence on the results, try to identify the cause for their 
unusual nature. Correct any data entry or measurement errors. Consider removing data that are 
associated with special causes and redoing the analysis. 

 

Normality 
A typical assumption in regression is that the random errors (𝜀) are normally distributed. The 

normality assumption is important when conducting hypothesis tests of the estimates of the 

coefficients (𝛽). Fortunately, even when the random errors are not normally distributed, the test 

results are usually reliable when the sample is large enough. 
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Objective 

We wanted to determine how large the sample needs to be to provide reliable results based on 

the normal distribution. We wanted to determine how closely the actual test results matched the 

target level of significance (alpha, or Type I error rate) for the test; that is, whether the test 

incorrectly rejected the null hypothesis more often or less often than expected for different 

nonnormal distributions. 

Method 

To estimate the Type I error rate, we performed multiple simulations with skewed, heavy-tailed, 

and light-tailed distributions that depart substantially from the normal distribution. We 

conducted simulations for the linear and quadratic models using a sample size of 15. We 

examined both the overall F-test and the test of the highest order term in the model. 

For each condition, we performed 10,000 tests. We generated random data so that for each test, 

the null hypothesis is true. Then, we performed the tests using a target significance level of 0.05. 

We counted the number of times out of 10,000 that the tests actually rejected the null 

hypothesis, and compared this proportion to the target significance level. If the test performs 

well, the Type I error rates should be very close to the target significance level. See Appendix C 

for more information on the simulations. 

Results 

For both the overall F-test and for the test of the highest order term in the model, the 

probability of finding statistically significant results does not differ substantially for any of the 

nonnormal distributions. The Type I error rates are all between 0.038 and 0.0529, very close to 

the target significance level of 0.05. 

Because the tests perform well with relatively small samples, the Assistant does not test the data 

for normality. Instead, the Assistant checks the size of the sample and indicates when the sample 

is less than 15. The Assistant displays the following status indicators in the Report Card for 

Regression: 

Status Condition 

 

The sample size is at least 15, so normality is not an issue. 

 

Because the sample size is less than 15, normality may be an issue. You should use caution when 
interpreting the p-value. With small samples, the accuracy of the p-value is sensitive to nonnormal 
residual errors. 
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Model fit 
You can select the linear or quadratic model before performing the regression analysis or you 

can choose for the Assistant to select the model. Several methods can be used to select an 

appropriate model. 

Objective 

We wanted to examine the different methods used to select a model type to determine which 

approach to use in the Assistant. 

Method 

We examined three methods that are typically used for model selection. The first method 

identifies the model in which the highest order term is significant. The second method selects 

the model with the highest 𝑅𝑎𝑑𝑗
2  value. The third method selects the model in which the overall 

F-test is significant. For more details, see Appendix A. 

To determine the approach used in the Assistant, we examined the methods and how their 

calculations compared to one another. We also gathered feedback from experts in quality 

analysis. 

Results 

We decided to use the method that selects the model based on the statistical significance of the 

highest order term in the model. The Assistant first examines the quadratic model and tests 

whether the square term in the model (𝛽3) is statistically significant. If that term is not significant, 

then it tests the linear term (𝛽1) in the linear model. The model selected through this approach is 

presented in the Model Selection Report. Additionally, if the user selected a model that is 

different than the one selected by the Assistant, we report that in the Model Selection Report 

and the Report Card. For more information, see the Regression method section above. 

Based on our findings, the Assistant Report Card displays the following status indicator: 

Status Condition 

 

 

You should evaluate the data and model fit in terms of your goals.  Look at the fitted line plots to 
be sure that: 

 The sample adequately covers the range of X values. 

 The model properly fits any curvature in the data (avoid over-fitting). 

 The line fits well in any areas of special interest. 

 

 

The Model Selection Report displays an alternative model that may be a better choice. 
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Appendix A: Model selection 
A regression model relating a predictor X to a response Y is of the form: 

𝑌 = 𝑓(𝑋) + 𝜀 

where the function f(X) represents the expected value (mean) of Y given X. 

In the Assistant, there are two choices for the form of the function f(X): 

Model type f(X) 

Linear 𝛽
0

+ 𝛽
1

𝑋 

Quadratic 𝛽
0

+ 𝛽
1

𝑋 + 𝛽
2

𝑋2  

 

The values of the coefficients 𝛽 are unknown and must be estimated from the data. The method 

of estimation is least squares, which minimizes the sum of squared residuals in the sample: 

min ∑ (𝑌𝑖 −  𝑓(𝑋𝑖))
2

.

𝑛

𝑖=1

 

A residual is the difference between the observed response 𝑌𝑖 and the fitted value 𝑓(𝑋𝑖) based 

on the estimated coefficients. The minimized value of this sum of squares is the SSE (error sum 

of squares) for a given model. 

To determine the method used in the Assistant to select the model type, we evaluated three 

options: 

 Significance of the highest order term in the model 

 The overall F-test of the model 

 Adjusted 𝑅2 value (𝑅𝑎𝑑𝑗
2 ) 

Significance of the highest order term in the model 
In this approach, the Assistant starts with the quadratic model. The Assistant tests the 

hypotheses for the square term in the quadratic model: 

𝐻0: 𝛽2 = 0 

𝐻1: 𝛽2 ≠ 0 
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If this null hypothesis is rejected, then the Assistant concludes that the square term coefficient is 

non-zero and selects the quadratic model. If not, the Assistant tests the hypotheses for the 

linear model: 

𝐻0: 𝛽1 = 0 

𝐻1: 𝛽1 ≠ 0 

Overall F-test 
This method is a test of the overall model (linear or quadratic). For the selected form of the 

regression function f(X), it tests: 

𝐻0: 𝑓(𝑋)𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐻1: 𝑓(𝑋)𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Adjusted 𝑹𝟐 
Adjusted 𝑅2 (𝑅𝑎𝑑𝑗

2 ) measures how much of the variability in the response is attributed to X by 

the model. There are two common ways of measuring the strength of the observed relationship 

between X and Y: 

𝑅2 = 1 − 
𝑆𝑆𝐸

𝑆𝑆𝑇𝑂
 

And 

𝑅𝑎𝑑𝑗
2 = 1 −  

𝑆𝑆𝐸/(𝑛 − 𝑝)

𝑆𝑆𝑇𝑂/(𝑛 − 1)
 

Where 

SSTO = ∑ (𝑌𝑖 −  𝑌̅)2𝑛
𝑖=1  

SSTO is the total sum of squares, which measures the variation of the responses about their 

overall average 𝑌̅  SSE measures their variation about the regression function f(X). The 

adjustment in 𝑅𝑎𝑑𝑗
2  is for the number of coefficients (p) in the full model, which leaves n – p 

degrees of freedom to estimate the variance of 𝜀.  𝑅2 never decreases when more coefficients 

are added to the model However, because of the adjustment, 𝑅𝑎𝑑𝑗
2  can decrease when additional 

coefficients do not improve the model. Thus, if adding another term to the model does not 

explain any additional variance in the response, 𝑅𝑎𝑑𝑗
2  decreases, indicating that the additional 

term is not useful. Therefore, the adjusted measure should be used to compare the linear and 

quadratic. 

Relationship between model selection methods 
We wanted to examine the relationship between the three model selection methods, how they 

are calculated, and how they affect one another. 
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First, we looked at the relationship between how the overall F-test and 𝑅𝑎𝑑𝑗
2  are calculated. The 

F- statistic for the test of the overall model can be expressed in terms of SSE and SSTO which are 

also used in the calculation of 𝑅𝑎𝑑𝑗
2 : 

F = 
(𝑆𝑆𝑇𝑂 – 𝑆𝑆𝐸)/(𝑝−1)

𝑆𝑆𝐸/(𝑛−𝑝)
 

= 1 +  (
𝑛 − 1

𝑝 − 1
)

𝑅𝑎𝑑𝑗
2

1 − 𝑅𝑎𝑑𝑗
2 . 

The formulas above show that the F-statistic is an increasing function of 𝑅𝑎𝑑𝑗
2 . Thus, the test 

rejects H0 if and only if 𝑅𝑎𝑑𝑗
2  exceeds a specific value determined by the significance level (𝛼) of 

the test. To illustrate this, we calculated the minimum 𝑅𝑎𝑑𝑗
2  needed to obtain statistical 

significance of the quadratic model at 𝛼 = 0.05 for different sample sizes shown in Table 1 

below. For example, with n = 15, the 𝑅𝑎𝑑𝑗
2  value for the model must be at least 0.291877 for the 

overall F-test to be statistically significant. 

Table 1  Minimum 𝑅𝑎𝑑𝑗
2  for a significant overall F-test for the quadratic model at 𝛼 = 0.05 at 

various sample sizes 

Sample size  Minimum 𝑹𝒂𝒅𝒋
𝟐  

4 0.992500 

5 0.900000 

6 0.773799 

7 0.664590 

8 0.577608 

9 0.508796 

10 0.453712 

11 0.408911 

12 0.371895 

13 0.340864 

14 0.314512 

15 0.291877 

16 0.272238 

17 0.255044 
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Sample size  Minimum 𝑹𝒂𝒅𝒋
𝟐  

18 0.239872 

19 0.226387 

20 0.214326 

21 0.203476 

22 0.193666 

23 0.184752 

24 0.176619 

25 0.169168 

26 0.162318 

27 0.155999 

28 0.150152 

29 0.144726 

30 0.139677 

31 0.134967 

32 0.130564 

33 0.126439 

34 0.122565 

35 0.118922 

36 0.115488 

37 0.112246 

38 0.109182 

39 0.106280 

40 0.103528 

41 0.100914 

42 0.098429 

43 0.096064 
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Sample size  Minimum 𝑹𝒂𝒅𝒋
𝟐  

44 0.093809 

45 0.091658 

46 0.089603 

47 0.087637 

48 0.085757 

49 0.083955 

50 0.082227 

 

Next, we examined the relationship between the hypothesis test of the highest order term in a 

model, and 𝑅𝑎𝑑𝑗
2 .The test for the highest order term, such as the square term in a quadratic 

model, can be expressed in terms of the sums of squares or of the 𝑅𝑎𝑑𝑗
2  of the full model (e.g. 

quadratic) and of the 𝑅𝑎𝑑𝑗
2  of the reduced model (e.g. linear): 

𝐹 =  
𝑆𝑆𝐸(𝑅𝑒𝑑𝑢𝑐𝑒𝑑)–  𝑆𝑆𝐸(𝐹𝑢𝑙𝑙)

𝑆𝑆𝐸(𝐹𝑢𝑙𝑙)/(𝑛 − 𝑝)
 

= 1 +
(𝑛 − 𝑝 + 1) (𝑅𝑎𝑑𝑗

2 (𝐹𝑢𝑙𝑙) − 𝑅𝑎𝑑𝑗
2 (𝑅𝑒𝑑𝑢𝑐𝑒𝑑))

1 − 𝑅𝑎𝑑𝑗
2 (𝐹𝑢𝑙𝑙)

. 

The formulas show that for a fixed value of 𝑅𝑎𝑑𝑗
2 (𝑅𝑒𝑑𝑢𝑐𝑒𝑑), the F-statistic is an increasing 

function of 𝑅𝑎𝑑𝑗
2 (𝐹𝑢𝑙𝑙). They also show how the test statistic depends on the difference between 

the two 𝑅𝑎𝑑𝑗
2 values. In particular, the value for the full model must be greater than the value for 

the reduced model to obtain an F-value large enough to be statistically significant. Thus, the 

method that uses the significance of the highest order term to select the best model is more 

stringent than the method that chooses the model with the highest 𝑅𝑎𝑑𝑗
2 . The highest order term 

method is also compatible with the preference of many users for a simpler model. Thus, we 

decided to use the statistical significance of the highest order term to select the model in the 

Assistant. 

Some users are more inclined to choose the model that best fits the data; that is, the model with 

highest 𝑅𝑎𝑑𝑗
2 . The Assistant provides these values in the Model Selection Report and the Report 

Card. 
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Appendix B: Amount of data 
In this section we consider how n, the number of observations, affects the power of the overall 

model test and the precision of 𝑅𝑎𝑑𝑗
2 , the estimate of the strength of the model. 

To quantify the strength of the relationship, we introduce a new quantity, 𝜌𝑎𝑑𝑗
2  , as the 

population counterpart of the sample statistic 𝑅𝑎𝑑𝑗
2 . Recall that 

𝑅𝑎𝑑𝑗
2 = 1 −  

𝑆𝑆𝐸/(𝑛 − 𝑝)

𝑆𝑆𝑇𝑂/(𝑛 − 1)
 

Therefore, we define 

𝜌𝑎𝑑𝑗
2 = 1 − 

𝐸(𝑆𝑆𝐸|𝑋)/(𝑛 − 𝑝)

𝐸(𝑆𝑆𝑇𝑂|𝑋)/(𝑛 − 1)
 

The operator E(∙|X) denotes the expected value, or the mean of a random variable given the 

value of X. Assuming the correct model is 𝑌 = 𝑓(𝑋) + 𝜀 with independent identically distributed 

ε, we have 

𝐸(𝑆𝑆𝐸|𝑋)

𝑛 − 𝑝
= 𝜎2 = 𝑉𝑎𝑟(𝜀) 

𝐸(𝑆𝑆𝑇𝑂|𝑋)

𝑛 − 1
= ∑

(𝑓(𝑋𝑖) − 𝑓̅)2

(𝑛 − 1) + 𝜎2
+ 𝜎2

𝑛

𝑖=1

∑
(𝑓(𝑋𝑖) − 𝑓̅)2

(𝑛 − 1) + 𝜎2

𝑛

𝑖=1

 

where 𝑓̅ =  
1

𝑛
∑ 𝑓(𝑋𝑖)𝑛

𝑖=1 . 

Hence, 

𝜌𝑎𝑑𝑗
2 =

∑ (𝑓(𝑋𝑖) − 𝑓̅)
2

(𝑛 − 1)⁄𝑛
𝑖=1

∑ (𝑓(𝑋𝑖) − 𝑓̅)
2

(𝑛 − 1)⁄ + 𝜎2𝑛
𝑖=1

 

Overall model significance 
When testing the statistical significance of the overall model, we assume that the random errors 

ε are independent and normally distributed. Then, under the null hypothesis that the mean of Y 

is constant (𝑓(𝑋) = 𝛽0), the F-test statistic has an 𝐹(𝑝 − 1, 𝑛 − 𝑝) distribution. Under the 

alternative hypothesis, the F-statistic has a noncentral 𝐹(𝑝 − 1, 𝑛 − 𝑝, 𝜃) distribution with 

noncentrality parameter: 

𝜃 = ∑ (𝑓(𝑋𝑖) − 𝑓̅)
2

𝜎2⁄

𝑛

𝑖=1

 

=
(𝑛 − 1)𝜌𝑎𝑑𝑗

2

1 − 𝜌𝑎𝑑𝑗
2  
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The probability of rejecting H0 increases with the noncentrality parameter, which is increasing in 

both n and 𝜌𝑎𝑑𝑗
2 . 

Using the formula above, we calculated the power of the overall F-tests for a range of 𝜌𝑎𝑑𝑗
2  

values when n = 15 for the linear and quadratic models. See Table 2 for the results. 

Table 2  Power for linear and quadratic models with different 𝜌𝑎𝑑𝑗
2  values with n=15 

𝝆𝒂𝒅𝒋
𝟐  θ Power of F 

Linear 

Power of F 

Quadratic 

0.05 0.737 0.12523 0.09615 

0.10 1.556 0.21175 0.15239 

0.15 2.471 0.30766 0.21896 

0.20 3.500 0.41024 0.29560 

0.25 4.667 0.51590 0.38139 

0.30 6.000 0.62033 0.47448 

0.35 7.538 0.71868 0.57196 

0.40 9.333 0.80606 0.66973 

0.45 11.455 0.87819 0.76259 

0.50 14.000 0.93237 0.84476 

0.55 17.111 0.96823 0.91084 

0.60 21.000 0.98820 0.95737 

0.65 26.000 0.99688 0.98443 

0.70 32.667 0.99951 0.99625 

0.75 42.000 0.99997 0.99954 

0.80 56.000 1.00000 0.99998 

0.85 79.333 1.00000 1.00000 

0.90 126.000 1.00000 1.00000 

0.95 266.000 1.00000 1.00000 

 

Overall, we found that the test has high power when the relationship between X and Y is strong 

and the sample size is at least 15. For example when 𝜌𝑎𝑑𝑗
2  = 0.65, Table 2 shows that the 
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probability of finding a statistically significant linear relationship at 𝛼 = 0.05 is 0.99688. The 

failure to detect such a strong relationship with the F-test would occur in less than 0.5% of 

samples. Even for a quadratic model, the failure to detect the relationship with the F-test would 

occur in less than 2% of samples. Thus, when the test fails to find a statistically significant 

relationship with 15 or more observations, it is a good indication that the true relationship, if 

there is one at all, has a 𝜌𝑎𝑑𝑗
2

 value lower than 0.65. Note that 𝜌𝑎𝑑𝑗
2  does not have to be as large 

as 0.65 to be of practical interest. 

We also wanted to examine the power of the overall F-test when the sample size was larger 

(n=40). We determined that the sample size n = 40 is an important threshold for the precision of 

the 𝑅𝑎𝑑𝑗
2  (see Strength of the relationship below) and we wanted to evaluate power values for 

the sample size. We calculated the power of the overall F-tests for a range of 𝜌𝑎𝑑𝑗
2  values when n 

= 40 for the linear and quadratic models. See Table 3 for the results. 

Table 3  Power for linear and quadratic models with different 𝜌𝑎𝑑𝑗
2

 values with n = 40 

𝝆𝒂𝒅𝒋
𝟐  θ  Power of F 

Linear 

Power of F 

Quadratic 

0.05 2.0526 0.28698 0.21541 

0.10 4.3333 0.52752 0.41502 

0.15 6.8824 0.72464 0.60957 

0.20 9.7500 0.86053 0.76981 

0.25 13.0000 0.93980 0.88237 

0.30 16.7143 0.97846 0.94925 

0.35 21.0000 0.99386 0.98217 

0.40 26.0000 0.99868 0.99515 

0.45 31.9091 0.99980 0.99905 

0.50 39.0000 0.99998 0.99988 

0.55 47.6667 1.00000 0.99999 

0.60 58.5000 1.00000 1.00000 

0.65 72.4286 1.00000 1.00000 

 

We found that the power was high, even when the relationship between X and Y was 

moderately weak. For example, even when 𝜌𝑎𝑑𝑗
2  = 0.25, Table 3 shows that the probability of 

finding a statistically significant linear relationship at 𝛼 = 0.05 is 0.93980. With 40 observations, 
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the F-test is unlikely to fail to detect a relationship between X and Y, even if that relationship is 

moderately weak. 

Strength of the relationship 
As we have already shown, a statistically significant relationship in the data does not necessarily 

indicate a strong underlying relationship between X and Y. This is why many users look to 

indicators such as 𝑅𝑎𝑑𝑗
2  to tell them how strong the relationship actually is. If we consider 𝑅𝑎𝑑𝑗

2  as 

an estimate of 𝜌𝑎𝑑𝑗
2 , then we want to have confidence that the estimate is reasonably close to 

the true 𝜌𝑎𝑑𝑗
2

 value. 

To illustrate the relationship between 𝑅𝑎𝑑𝑗
2  and 𝜌𝑎𝑑𝑗

2 , we simulated the distribution of 𝑅𝑎𝑑𝑗
2  for 

different values of 𝜌𝑎𝑑𝑗
2  to see how variable 𝑅𝑎𝑑𝑗

2  is for different values of n. The graphs in 

Figures 1-4 below show histograms of 10,000 simulated values of 𝑅𝑎𝑑𝑗
2 . In each pair of 

histograms, the value of 𝜌𝑎𝑑𝑗
2  is the same so that we can compare the variability of 𝑅𝑎𝑑𝑗

2  for 

samples of size 15 to samples of size 40. We tested 𝜌𝑎𝑑𝑗
2  values of 0.0, 0.30, 0.60, and 0.90. All 

simulations were performed with the linear model. 

 

Figure 1  Simulated 𝑅𝑎𝑑𝑗
2  values for 𝜌𝑎𝑑𝑗

2  = 0.0 for n=15 and n=40 
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Figure 2  Simulated 𝑅𝑎𝑑𝑗
2  values for 𝜌𝑎𝑑𝑗

2  = 0.30 for n=15 and n=40 
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Figure 3  Simulated 𝑅𝑎𝑑𝑗
2  values for 𝜌𝑎𝑑𝑗

2  = 0.60 for n=15 and n=40 

Histogram of R-sq (adj) for rho-sq(adj)=0.6
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Figure 4  Simulated 𝑅𝑎𝑑𝑗
2  values for 𝜌𝑎𝑑𝑗

2  = 0.90 for n=15 and n=40 

Overall, the simulations show that there can be a considerable difference between the actual 

strength of the relationship (𝜌𝑎𝑑𝑗
2 ) and the relationship observed in the data (𝑅𝑎𝑑𝑗

2 ). Increasing 

the sample size from 15 to 40 greatly reduces the likely magnitude of the difference. We 

determined that 40 observations is an appropriate threshold by identifying the minimum value 

of n for which absolute differences |𝑅𝑎𝑑𝑗
2  – 𝜌𝑎𝑑𝑗

2 | greater than 0.20 occur with no more than 10% 

probability. This is regardless of the true value of 𝜌𝑎𝑑𝑗
2  in any of the models considered. For the 

linear model, the most difficult case was 𝜌𝑎𝑑𝑗
2  = 0.31, which required n = 36. For the quadratic 

model, the most difficult case was 𝜌𝑎𝑑𝑗
2  = 0.30, which required n = 38. With 40 observations, you 

can be 90% confident that observed value of 𝑅𝑎𝑑𝑗
2  will be within 0.20 of 𝜌𝑎𝑑𝑗

2 , regardless of what 

that value is and whether you use the linear or quadratic model. 
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Appendix C: Normality 
The regression models used in the Assistant are all of the form: 

𝑌 = 𝑓(𝑋) + 𝜀 

The typical assumption about the random terms 𝜀 is that they are independent and identically 

distributed normal random variables with mean zero and common variance 𝜎2. The least 

squares estimates of the 𝛽 parameters are still the best linear unbiased estimates, even if we 

forgo the assumption that the 𝜀 are normally distributed. The normality assumption only 

becomes important when we try to attach probabilities to these estimates, as we do in the 

hypothesis tests about f(X). 

We wanted to determine how large n needs to be so that we can trust the results of a regression 

analysis based on the normality assumption. We performed simulations to explore the Type I 

error rates of the hypothesis tests under a variety of nonnormal error distributions. 

Table 4 below shows the proportion of 10,000 simulations in which the overall F-test was 

significant at 𝛼 = 0.05 for various distributions of ε for the linear and quadratic models. In these 

simulations, the null hypothesis, which states that there is no relationship between X and Y, was 

true. The X values were evenly spaced over an interval. We used a sample size of n=15 for all 

tests. 

Table 4  Type I error rates for overall F-tests for linear and quadratic models with n=15 for 

nonnormal distributions 

Distribution Linear significant Quadratic significant 

Normal 0.04770 0.05060 

t(3) 0.04670 0.05150 

t(5) 0.04980 0.04540 

Laplace 0.04800 0.04720 

Uniform 0.05140 0.04450 

Beta(3, 3) 0.05100 0.05090 

Exponential 0.04380 0.04880 

Chi(3) 0.04860 0.05210 

Chi(5) 0.04900 0.05260 

Chi(10) 0.04970 0.05000 

Beta(8, 1) 0.04780 0.04710 
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Next, we examined the test of the highest order term used to select the best model. For each 

simulation, we considered whether the square term was significant. For cases where the square 

term was not significant, we considered whether the linear term was significant. In these 

simulations, the null hypothesis was true, target 𝛼 = 0.05 and n=15. 

Table 5  Type I error rates for tests of highest order term for linear or quadratic models with 

n=15 for nonnormal distributions 

Distribution Square Linear  

Normal 0.05050 0.04630 

t(3) 0.05120 0.04300 

t(5) 0.04710 0.04820 

Laplace 0.04770 0.04660 

Uniform 0.04670 0.04900 

Beta(3, 3) 0.05000 0.04860 

Exponential 0.04600 0.03800 

Chi(3) 0.05110 0.04290 

Chi(5) 0.05290 0.04490 

Chi(10) 0.04970 0.04610 

Beta(8, 1) 0.04770 0.04380 

 

The simulation results show, that for both the overall F-test and for the test of the highest order 

term in the model, the probability of finding statistically significant results does not differ 

substantially for any of the error distributions. The Type I error rates are all between 0.038 and 

0.0529. 
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