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This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

One-Way ANOVA 

Overview 
One-way ANOVA is used to compare the means of three or more groups to determine whether 

they differ significantly from one another. Another important function is to estimate the 

differences between specific groups.  

The most common method to detect differences among groups in one-way ANOVA is the  

F-test, which is based on the assumption that the populations for all samples share a common, 

but unknown, standard deviation. We recognized, in practice, that samples often have different 

standard deviations. Therefore, we wanted to investigate the Welch method, an alternative to 

the F-test, which can handle unequal standard deviations. We also wanted to develop a method 

to calculate multiple comparisons that accounts for samples with unequal standard deviations. 

With this method, we can graph the individual intervals, which provide an easy way to identify 

groups that differ from one another. 

In this paper, we describe how we developed the methods used in the Minitab Assistant One-

Way ANOVA procedure for:  

 Welch test 

 Multiple comparison intervals 

Additionally, we examine conditions that can affect the validity of the one-way ANOVA results, 

including the presence of unusual data, the sample size and power of the test, and the normality 

of the data. Based on these conditions, the Assistant automatically performs the following 

checks on your data and reports the findings in the Report Card: 

 Unusual data 

 Sample size 

 Normality of data 

In this paper, we investigate how these conditions relate to one-way ANOVA in practice and we 

describe how we established the guidelines to check for these conditions in the Assistant.  
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One-way ANOVA methods 

The F-test versus the Welch test 
The F-test commonly used in one-way ANOVA is based on the assumption that all of the groups 

share a common, but unknown, standard deviation (σ). In practice, this assumption rarely holds 

true, which leads to problems controlling the Type I error rate. Type I error is the probability of 

incorrectly rejecting the null hypothesis (concluding the samples are significantly different when 

they are not). When the samples have different standard deviations, there is a greater likelihood 

that the test will reach an incorrect conclusion. To address this problem, the Welch test was 

developed as an alternative to the F-test (Welch, 1951).  

Objective 

We wanted to determine whether to use the F-test or the Welch test for the One-Way ANOVA 

procedure in the Assistant. To do this, we needed to evaluate how closely the actual test results 

for the F-test and the Welch test matched the target level of significance (alpha, or Type I error 

rate) for the test; that is, whether the test incorrectly rejected the null hypothesis more often or 

less often than intended given different sample sizes and sample standard deviations.  

Method 

To compare the F-test and the Welch test, we performed multiple simulations, varying the 

number of samples, the sample size, and the sample standard deviation. For each condition, we 

performed 10,000 ANOVA tests using both the F-test and the Welch method. We generated 

random data so that the means of the samples were the same and thus, for each test, the null 

hypothesis was true. Then, we performed the tests using target significance levels of 0.05 and 

0.01. We counted the number of times out of 10,000 tests the F-test and Welch tests actually 

rejected the null hypothesis, and compared this proportion to the target significance level. If the 

test performs well, the estimated Type I error should be very close to the target significance 

level.  

Results 

We found that Welch method performed as well as or better than the F-test under all of the 

conditions we tested. For example, when comparing 5 samples using the Welch test, the Type I 

error rates were between 0.0460 and 0.0540, very close to the target significance level of 0.05. 

This indicates that Type I error rate for the Welch method matches the target value even when 

sample size and standard deviation varies across samples. 
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On the other hand, the Type I error rates for the F-test were between 0.0273 and 0.2277. In 

particular, the F-test did poorly under the following conditions: 

 The Type I error rates fell below 0.05 when the largest sample also had the largest 

standard deviation. This condition results in a more conservative test and demonstrates 

that simply increasing the sample size is not a viable solution when the standard 

deviations for the samples are not equal.  

 The Type I error rates were above 0.05 when the sample sizes were equal but standard 

deviations were different. The rates were also greater than 0.05 when the sample with a 

larger standard deviation was of a smaller size than the other samples. In particular, 

when smaller samples have larger standard deviations, there is a substantial increase in 

the risk that this test incorrectly rejects the null hypothesis.  

For more information on the simulation methodology and results, see Appendix A. 

Because the Welch method performed well when the standard deviations and sizes of the 

samples were unequal, we use the Welch method for the One-way ANOVA procedure in the 

Assistant.  

Comparison intervals 
When an ANOVA test is statistically significant, indicating that at least one of the sample means 

is different from the others, the next step in the analysis is to determine which samples are 

statistically different. An intuitive way to make this comparison is to graph the confidence 

intervals and identify the samples whose intervals do not overlap. However, the conclusions 

drawn from the graph may not match the test results because the individual confidence intervals 

are not designed for comparisons. Although a published method for multiple comparisons exists 

for samples with equal standard deviations, we needed to extend this method to account for 

samples with unequal standard deviations. 

Objective 

We wanted to develop a method to calculate individual comparison intervals that can be used 

to make comparisons across samples and that also match the test results as closely as possible. 

We also wanted to provide a visual method for determining which samples are statistically 

different from the others. 

Method 

Standard multiple comparison methods (Hsu 1996) provide an interval for the difference 

between each pair of means while controlling for the increased error that occurs when making 

multiple comparisons. In the special case of equal sample sizes and under the assumption of 

equal standard deviations, it is possible to display individual intervals for each mean in a way 

that corresponds exactly to the intervals for the differences of all the pairs. For the case of 

unequal sample sizes, with the assumption of equal standard deviations, Hochberg, Weiss, and 

Hart (1982) developed individual intervals that are approximately equivalent to the intervals for 
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differences among pairs, based on the Tukey-Kramer method of multiple comparisons. In the 

Assistant, we apply the same approach to the Games-Howell method of multiple comparisons, 

which does not assume equal standard deviations. The approach used in the Assistant in release 

16 of Minitab was similar in concept, but was not based directly on the Games-Howell approach. 

For more details, see Appendix B. 

Results 

The Assistant displays the comparison intervals in the Means Comparison Chart in the One-Way 

ANOVA Summary Report. When the ANOVA test is statistically significant, any comparison 

interval that does not overlap with at least one other interval is marked in red. It is possible for 

the test and the comparison intervals to disagree, although this outcome is rare because both 

methods have the same probability of rejecting the null hypothesis when it is true. If the ANOVA 

test is significant yet all of the intervals overlap, then the pair with the smallest amount of 

overlap is marked in red. If the ANOVA test is not statistically significant, then none of the 

intervals are marked in red, even if some of the intervals do not overlap. 
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Data checks 

Unusual data 
Unusual data are extremely large or small data values, also known as outliers. Unusual data can 

have a strong influence on the results of the analysis and can affect the chances of finding 

statistically significant results, especially when the sample is small. Unusual data can indicate 

problems with data collection, or may be due to unusual behavior of the process you are 

studying. Therefore, these data points are often worth investigating and should be corrected 

when possible.  

Objective 

We wanted to develop a method to check for data values that are very large or very small 

relative to the overall sample, which may affect the results of the analysis.  

Method 

We developed a method to check for unusual data based on the method described by Hoaglin, 

Iglewicz, and Tukey (1986) to identify outliers in boxplots. 

Results 

The Assistant identifies a data point as unusual if it is more than 1.5 times the interquartile range 

beyond the lower or upper quartile of the distribution. The lower and upper quartiles are the 

25th and 75th percentiles of the data. The interquartile range is the difference between the two 

quartiles. This method works well even when there are multiple outliers because it makes it 

possible to detect each specific outlier. 

When checking for unusual data, the Assistant displays the following status indicators in the 

Report Card: 

Status Condition 

 
There are no unusual data points.  

 
At least one data point is unusual and may have a strong influence on the results.  
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Sample size 
Power is an important property of any hypothesis test because it indicates the likelihood that 

you will find a significant effect or difference when one truly exists. Power is the probability that 

you will reject the null hypothesis in favor of the alternative hypothesis. Often, the easiest way to 

increase the power of a test is to increase the sample size. In the Assistant, for tests with low 

power, we indicate how large your sample needs to be to find the difference you specified. If no 

difference is specified, we report the difference you could detect with adequate power. To 

provide this information, we needed to develop a method for calculating power because the 

Assistant uses the Welch method, which does not have an exact formula for power.  

Objective 

To develop a methodology for calculating power, we needed to address two questions. First, the 

Assistant does not require that users enter a full set of means; it only requires that they enter a 

difference between means that has practical implications. For any given difference, there are an 

infinite number of possible configurations of means that could produce that difference. 

Therefore, we needed to develop a reasonable approach to determine which means to use when 

calculating power, given that we could not calculate power for all possible configurations of 

means. Second, we needed to develop a method to calculate power because the Assistant uses 

the Welch method, which does not require equal sample sizes or standard deviations. 

Method 

To address the infinite number of possible configurations of means, we developed a method 

based on the approach used in the standard one-way ANOVA procedure in Minitab (Stat > 

ANOVA > One-Way). We focused on the cases where only two of the means differ by the stated 

amount and the other means are equal (set to the weighted average of the means). Because we 

assume that only two means differ from the overall mean (and not more than two), the 

approach provides a conservative estimate of power. However, because the samples may have 

different sizes or standard deviations, the power calculation still depends on which two means 

are assumed to differ.  

To solve this problem, we identify the two pairs of means that represent the best and worst 

cases. The worst case occurs when the sample size is small relative to the sample variance, and 

power is minimized; the best case occurs when the sample size is large relative to the sample 

variance, and power is maximized. All of the power calculations consider these two extreme 

cases, which minimize and maximize the power under the assumption that exactly two means 

differ from the overall weighted average of means.  

To develop the power calculation, we used a method shown in Kulinskaya et al. (2003). We 

compared the power calculations from our simulation, the method we developed to address the 

configuration of means and the method shown in Kulinskaya et al. (2003). We also examined 

another power approximation that shows more clearly how power depends on the configuration 

of means. For more information on the power calculation, see Appendix C. 
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Results 

Our comparison of these methods showed that the Kulinskaya method provides a good 

approximation of power and that our method for handling the configuration of means is 

appropriate.  

When the data does not provide enough evidence against the null hypothesis, the Assistant 

calculates practical differences that can be detected with an 80% and a 90% probability for the 

given sample sizes. In addition, if you specify a practical difference, the Assistant calculates the 

minimum and maximum power values for this difference. When the power values are below 

90%, the Assistant calculates a sample size based on the specified difference and the observed 

sample standard deviations. To ensure that the sample size results in both the minimum and 

maximum power values being 90% or greater, we assume that the specified difference is 

between the two means with the greatest variability. 

If the user does not specify a difference, the Assistant finds the largest difference at which the 

maximum of the range of power values is 60%. This value is labeled at the boundary between 

the red and yellow bars on the Power Report, corresponding to 60% power. We also find the 

smallest difference at which the minimum of the range of power values is 90%. This value is 

labeled at the boundary between the yellow and green bars on the Power Report, 

corresponding to 90% power. 

When checking for power and sample size, the Assistant displays the following status indicators 

in the Report Card: 

Status Condition 

 

The data does not provide sufficient evidence to conclude that there are differences among the 
means. No difference was specified. 

 

The test finds a difference between the means, so power is not an issue. 

OR 

Power is sufficient. The test did not find a difference between the means, but the sample is large 
enough to provide at least a 90% chance of detecting the given difference. 

 

Power may be sufficient. The test did not find a difference between the means, but the sample is 
large enough to provide an 80% to 90% chance of detecting the given difference. The sample size 
required to achieve 90% power is reported. 

 

Power might not be sufficient. The test did not find a difference between the means, and the sample 
is large enough to provide a 60% to 80% chance of detecting the given difference. The sample sizes 
required to achieve 80% power and 90% power are reported. 

 

Power is not sufficient. The test did not find a difference between the means, and the sample is not 
large enough to provide at least a 60% chance of detecting the given difference. The sample sizes 
required to achieve 80% power and 90% power are reported. 
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Normality 
A common assumption in many statistical methods is that the data are normally distributed. 

Fortunately, even when data are not normally distributed, methods based on the normality 

assumption can work well. This is in part explained by the central limit theorem, which says that 

the distribution of any sample mean has an approximate normal distribution and that the 

approximation becomes almost normal as the sample size gets larger.  

Objective 

Our objective was to determine how large the sample needs to be to give a reasonably good 

approximation of the normal distribution. We wanted to examine the Welch test and 

comparison intervals with samples of small to moderate size with various nonnormal 

distributions. We wanted to determine how closely the actual test results for Welch method and 

the comparison intervals matched the chosen level of significance (alpha, or Type I error rate) for 

the test; that is, whether the test incorrectly rejected the null hypothesis more often or less often 

than expected given different sample sizes, numbers of levels, and nonnormal distributions. 

Method 

To estimate the Type I error, we performed multiple simulations, varying the number of samples, 

sample size, and the distribution of the data. The simulations included skewed and heavy-tailed 

distributions that depart substantially from the normal distribution. The size and standard 

deviation were constant across samples within each test.  

For each condition, we performed 10,000 ANOVA tests using the Welch method and the 

comparison intervals. We generated random data so that the means of the samples were the 

same and thus, for each test, the null hypothesis was true. Then, we performed the tests using a 

target significance level of 0.05. We counted the number of times out of 10,000 when the tests 

actually rejected the null hypothesis, and compared this proportion to the target significance 

level. For the comparison intervals, we counted the number of times out of 10,000 when the 

intervals indicated one or more difference. If the test performs well, the Type I error should be 

very close to the target significance level.  

Results 

Overall, the tests and the comparison intervals perform very well across all conditions with 

sample sizes as small as 10 or 15. For tests with 9 or fewer levels, in almost every case, the 

results are all within 3 percentage points of the target significance level for a sample size of 10 

and within 2 percentage points for a sample size of 15. For tests that have 10 or more levels, in 

most cases the results are within 3 percentage points with a sample size of 15 and within 2 

percentage points with a sample size of 20. For more information, see Appendix D. 
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Because the tests perform well with relatively small samples, the Assistant does not test the data 

for normality. Instead, the Assistant checks the size of the samples and indicates when the 

samples are less than 15 for 2-9 levels and less than 20 for 10-12 levels. Based on these results, 

the Assistant displays the following status indicators in the Report Card: 

Status Condition 

 

The sample sizes are at least 15 or 20, so normality is not an issue. 

 

Because some sample sizes are less than 15 or 20, normality may be an issue.  
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Appendix A: The F-test versus the 
Welch test 
The F-test can result in an increase of the Type I error rate when the assumption of equal 

standard deviations is violated; the Welch test is designed to avoid these problems.  

Welch test 
Random samples of sizes n1, …, nk from k populations are observed. Let μ1,…,μk denote the 

population means and let 𝜎1
2, … , 𝜎𝑘

2 denote the population variances. Let 𝑥̅1, … , 𝑥̅𝑘 denote the 

sample means and let 𝑠1
2, … , 𝑠𝑘

2 denote the sample variances. We are interested in testing the 

hypotheses: 

H0: 𝜇1 =  𝜇2 = ⋯ =  𝜇𝑘  

H1: 𝜇𝑖 ≠ 𝜇𝑗 for some i, j. 

The Welch test for testing the equality of k means compares the statistic 

𝑊∗ =  
∑ 𝑤𝑗(𝑥̅𝑗− 𝜇̂)

2𝑘
𝑗=1 (𝑘−1)⁄

1+[2(𝑘−2) (𝑘2− 1)⁄ ] ∑ ℎ𝑗
𝑘
𝑗=1

  

to the F(k – 1, f) distribution, where 

𝑤𝑗  =  
𝑛𝑗

𝑠𝑗
2 , 

𝑊 =  ∑ 𝑤𝑗
𝑘
𝑗=1  , 

𝜇̂ =  
∑ 𝑤𝑗 𝑥̅𝑗 

𝑘
𝑗=1

𝑊
 , 

ℎ𝑗  =  
(1− 𝑤𝑗 𝑊⁄ )

2

𝑛𝑗−1
 , and 

𝑓 =  
𝑘2−1

3 ∑ ℎ𝑗
𝑘
𝑗 =1

 . 

The Welch test rejects the null hypothesis if 𝑊∗ ≥ 𝐹𝑘 – 1,𝑓,1 – 𝛼, the percentile of the F distribution 

that is exceeded with probability 𝛼. 

Unequal standard deviations 
In this section we demonstrate the sensitivity of the F-test to violations of the assumption of 

equal standard deviations and compare it to the Welch test.  

The results below are for one-way ANOVA tests using 5 samples of N(0, σ2). Each row is based 

on 10,000 simulations using the F-test and the Welch test. We tested two conditions for the 

standard deviation by increasing the standard deviation of the fifth sample, doubling it and 
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quadrupling it compared to the other samples. We tested three different conditions for the 

sample size: samples sizes are equal, the fifth sample is greater than the others, and the fifth 

sample is less than the others. 

Table 1  Type I error rates for simulated F-tests and Welch tests with 5 samples with target 

significance level  = 0.05 

Standard deviation  
(σ1, σ2, σ3, σ4, σ5) 

Sample size 
(n1, n2, n3, n4, n5) 

F-test Welch test 

1, 1, 1, 1, 2 10, 10, 10, 10, 20 .0273 .0524 

1, 1, 1, 1, 2 20, 20, 20, 20, 20 .0678 .0462 

1, 1, 1, 1, 2 20, 20, 20, 20, 10 .1258 .0540 

1, 1, 1, 1, 4 10, 10, 10, 10, 20 .0312 .0460 

1, 1, 1, 1, 4 20, 20, 20, 20, 20 .1065 .0533 

1, 1, 1, 1, 4 20, 20, 20, 20, 10 .2277 .0503 

 

When the sample sizes are equal (rows 2 and 5), the probability that the F-test incorrectly rejects 

the null hypothesis is greater than the target 0.05, and the probability increases when the 

inequality among standard deviations is greater. The problem is made even worse by decreasing 

the size of the sample with the largest standard deviation. On the other hand, increasing the size 

of the sample with the largest standard deviation reduces the probability of rejection. However, 

increasing the sample size by too much makes the probability of rejection too small, which not 

only makes the test more conservative than necessary under the null hypothesis, but also 

adversely affects the power of the test under the alternative hypothesis. Compare these results 

with the Welch test, which agrees well with the target significance level of 0.05 in every case. 

Next we conducted a simulation for cases with k = 7 samples. Each row of the table summarizes 

10,000 simulated F-tests. We varied the standard deviations and sizes of the samples. The target 

significance levels are 𝛼 = 0.05 and 𝛼 = 0.01. As above, we see deviations from the target values 

that can be quite severe. Using a smaller sample size when variability is higher leads to very 

large Type I error probabilities, while using a larger sample can lead to an extremely 

conservative test. The results are shown in Table 2 below. 

Table 2  Type I error rates for simulated F-tests with 7 samples 

Standard deviation  
(σ1, σ2, σ3, σ4, σ5, σ6, σ7) 

Sample sizes 
(n1, n2, n3, n4, n5, n6, n7) 

Target 𝛂 = 
0.05 

Target 𝛂 = 
0.01 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 21, 21, 21, 21, 22, 22, 12 0.0795 0.0233 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 20, 21, 21, 21, 21, 24, 12 0.0785 0.0226 
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Standard deviation  
(σ1, σ2, σ3, σ4, σ5, σ6, σ7) 

Sample sizes 
(n1, n2, n3, n4, n5, n6, n7) 

Target 𝛂 = 
0.05 

Target 𝛂 = 
0.01 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 20, 21, 21, 21, 21, 21, 15 0.0712 0.0199 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 20, 20, 20, 21, 21, 23, 15 0.0719 0.0172 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 20, 20, 20, 20, 21, 21, 18 0.0632 0.0166 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 20, 20, 20, 20, 20, 20, 20 0.0576 0.0138 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 18, 19, 19, 20, 20, 20, 24 0.0474 0.0133 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 18, 18, 18, 18, 18, 18, 32 0.0314 0.0057 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 15, 18, 18, 19, 20, 20, 30 0.0400 0.0085 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 12, 18, 18, 18, 19, 19, 36 0.0288 0.0064 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 15, 15, 15, 15, 15, 15, 50 0.0163 0.0025 

1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.9 12, 12, 12, 12, 12, 12, 68 0.0052 0.0002 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 21, 21, 21, 21, 22, 22, 12 0.1097 0.0436 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 20, 21, 21, 21, 21, 24, 12 0.1119 0.0452 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 20, 21, 21, 21, 21, 21, 15 0.0996 0.0376 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 20, 20, 20, 21, 21, 23, 15 0.0657 0.0345 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 20, 20, 20, 20, 21, 21, 18 0.0779 0.0283 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 20, 20, 20, 20, 20, 20, 20 0.0737 0.0264 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 18, 19, 19, 20, 20, 20, 24 0.0604 0.0204 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 18, 18, 18, 18, 18, 18, 32 0.0368 0.0122 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 15, 18, 18, 19, 20, 20, 30 0.0390 0.0117 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 12, 18, 18, 18, 19, 19, 36 0.0232 0.0046 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 15, 15, 15, 15, 15, 15, 50 0.0124 0.0026 

1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 3.5 12, 12, 12, 12, 12, 12, 68 0.0027 0.0004 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

21, 21, 21, 21, 22, 22, 12 0.1340 0.0630 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

20, 21, 21, 21, 21, 24, 12 0.1329 0.0654 
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Standard deviation  
(σ1, σ2, σ3, σ4, σ5, σ6, σ7) 

Sample sizes 
(n1, n2, n3, n4, n5, n6, n7) 

Target 𝛂 = 
0.05 

Target 𝛂 = 
0.01 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

20, 21, 21, 21, 21, 21, 15 0.1101 0.0484 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

20, 20, 20, 21, 21, 23, 15 0.1121 0.0495 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

20, 20, 20, 20, 21, 21, 18 0.0876 0.0374 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

20, 20, 20, 20, 20, 20, 20 0.0808 0.0317 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

18, 19, 19, 20, 20, 20, 24 0.0606 0.0243 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

18, 18, 18, 18, 18, 18, 32 0.0356 0.0119 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

15, 18, 18, 19, 20, 20, 30 0.0412 0.0134 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

12, 18, 18, 18, 19, 19, 36 0.0261 0.0068 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

15, 15, 15, 15, 15, 15, 50 0.0100 0.0023 

1.68333, 1.68333, 1.68333, 1.68333, 
1.68333, 1.68333, 3.9 

12, 12, 12, 12, 12, 12, 68 0.0017 0.0003 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 21, 21, 21, 21, 22, 22, 12 0.1773 0.1006 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 20, 21, 21, 21, 21, 24, 12 0.1811 0.1040 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 20, 21, 21, 21, 21, 21, 15 0.1445 0.0760 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 20, 20, 20, 21, 21, 23, 15 0.1448 0.0786 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 20, 20, 20, 20, 21, 21, 18 0.1164 0.0572 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 20, 20, 20, 20, 20, 20, 20 0.1020 0.0503 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 18, 19, 19, 20, 20, 20, 24 0.0834 0.0369 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 18, 18, 18, 18, 18, 18, 32 0.0425 0.0159 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 15, 18, 18, 19, 20, 20, 30 0.0463 0.0168 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 12, 18, 18, 18, 19, 19, 36 0.0305 0.0103 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 15, 15, 15, 15, 15, 15, 50 0.0082 0.0021 
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Standard deviation  
(σ1, σ2, σ3, σ4, σ5, σ6, σ7) 

Sample sizes 
(n1, n2, n3, n4, n5, n6, n7) 

Target 𝛂 = 
0.05 

Target 𝛂 = 
0.01 

1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 4.7 12, 12, 12, 12, 12, 12, 68 0.0013 0.0001 
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Appendix B: Comparison intervals 
The means comparison chart allows you to evaluate the statistical significance of differences 

among the population means. 

 

Figure 1  The Means Comparison Chart in the Assistant One-Way ANOVA Summary Report 
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A similar set of intervals appears in the output for the standard one-way ANOVA procedure in 

Minitab (Stat > ANOVA > One-Way): 

 

However, note that the intervals above are simply individual confidence intervals for the means. 

When the ANOVA test (either F or Welch) concludes that some means are different, there is a 

natural tendency to look for intervals that do not overlap and draw conclusions about which 

means differ. This informal analysis of the individual confidence intervals will often lead to 

reasonable conclusions, but it does not control for the probability of error the same way the 

ANOVA test does. Depending on the number of populations, the intervals may be substantially 

more or less likely than the test to conclude that there are differences. As a result, the two 

methods can easily reach inconsistent conclusions. The comparison chart is designed to more 

consistently match the Welch test results when making multiple comparisons, although it is not 

always possible to achieve complete consistency. 

Multiple comparison methods, such as such as the Tukey-Kramer and Games-Howell 

comparisons in Minitab (Stat > ANOVA > One-Way), allow you to draw statistically valid 

conclusions about differences among the individual means. These two methods are pairwise 

comparison methods, which provide an interval for the difference between each pair of means. 

The probability that all intervals simultaneously contain the differences they are estimating is at 

least 1 − 𝛼. The Tukey-Kramer method depends on the assumption of equal variances, while the 

Games-Howell method does not require equal variances. If the null hypothesis of equal means is 

true, then all the differences are zero, and the probability that any of the Games-Howell intervals 

will fail to contain zero is at most 𝛼. So we can use the intervals to perform a hypothesis test 
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with significance level 𝛼. We use Games-Howell intervals as the starting point for deriving the 

comparison chart intervals in the Assistant. 

Given a set of intervals [Lij, Uij] for all the differences μi – μj, 1 ≤ i < j ≤ k, we want to find a set of 

intervals [Li, Ui] for the individual means μi, 1 ≤ i ≤ k, that conveys the same information. This 

requires that any difference d is in the interval [Lij, Uij] if, and only if, there exists 𝜇𝑖 ∈ [𝐿𝑖, 𝑈𝑖] and 

𝜇𝑗 ∈ [𝐿𝑗, 𝑈𝑗] such that 𝜇𝑖 – 𝜇𝑗 = 𝑑. The endpoints of the intervals must be related by the 

equations 

𝑈𝑖 − 𝐿𝑗 =  𝑈𝑖𝑗  𝑎𝑛𝑑 

𝐿𝑖 − 𝑈𝑗 = 𝐿𝑖𝑗 . 

For k = 2, we have only one difference but two individual intervals, so it is possible to obtain 

exact comparison intervals. In fact, there is quite a bit of flexibility in the width of the intervals 

that satisfy this condition. For k = 3, there are three differences and three individual intervals, so 

again it is possible to satisfy the condition, but now without the flexibility in setting the width of 

the intervals. For k = 4, there are six differences but only four individual intervals. Comparison 

intervals must try to convey the same information using fewer intervals. In general, for k ≥ 4, 

there are more differences than individual means, so there is not an exact solution unless 

additional conditions are imposed on the intervals for differences, such as equal widths. 

Tukey-Kramer intervals have equal widths only if all the sample sizes are the same. The equal 

widths are also a consequence of assuming equal variances. Games-Howell intervals do not 

assume equal variances, and so do not have equal widths. In the Assistant, we will have to rely 

on approximate methods to define comparison intervals. 

The Games-Howell interval for 𝜇𝑖 − 𝜇𝑗 is 

𝑥̅𝑖 – 𝑥̅𝑗 ±  |𝑞∗(𝑘, 𝜈̂𝑖𝑗)|√𝑠𝑖
2 𝑛𝑖⁄ + 𝑠𝑗

2 𝑛𝑗⁄   

where 𝑞∗(𝑘, 𝜈̂𝑖𝑗)  is the appropriate percentile of the studentized range distribution, which 

depends on k, the number of means being compared, and on  

νij, the degrees of freedom associated with the pair (i, j): 

𝜈̂𝑖𝑗 =

(
𝑠𝑖

2

𝑛𝑖
+

𝑠𝑗
2

𝑛𝑗
)

2

(
𝑠𝑖

2

𝑛𝑖
)

2
1

𝑛𝑖 − 1 + (
𝑠𝑗

2

𝑛𝑗
)

2
1

𝑛𝑗 − 1

. 

Hochberg, Weiss, and Hart (1982) obtained individual intervals that are approximately 

equivalent to these pairwise comparisons by using: 

𝑥̅𝑖 ± |𝑞∗(𝑘, 𝜈)|𝑠𝑝𝑋𝑖. 

The values  𝑋𝑖  are selected to minimize 

∑ ∑ (𝑋𝑖 + 𝑋𝑗 −  𝑎𝑖𝑗)
2

𝑖 ≠𝑗 , 
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Where: 

𝑎𝑖𝑗  =  √1 𝑛𝑖⁄  + 1 𝑛𝑗⁄  . 

We adapt this approach to the case of unequal variances by deriving intervals from Games-

Howell comparisons of the form 

𝑥̅𝑖 ± 𝑑𝑖. 

The values  𝑑𝑖  are selected to minimize 

∑ ∑ (𝑑𝑖 + 𝑑𝑗 −  𝑏𝑖𝑗)
2

𝑖 ≠𝑗 , 

Where: 

𝑏𝑖𝑗  =  |𝑞∗(𝑘, 𝜈̂𝑖𝑗)|√𝑠𝑖
2 𝑛𝑖⁄  +  𝑠𝑗

2 𝑛𝑗⁄  . 

The solution is 

𝑑𝑖  =  
1

𝑘−1
∑ 𝑏𝑖𝑗𝑗≠𝑖 −

1

(𝑘−1)(𝑘−2)
∑ 𝑏𝑗𝑙𝑗≠𝑖,𝑙≠𝑖,𝑗<𝑙 . 

The graphs below compare simulation results for the Welch test with the results for comparison 

intervals using two methods: the Games-Howell based method we use now, and the method 

used in release 16 of Minitab based on an averaging of degrees of freedom. The vertical axis is 

the proportion of times out of 10,000 simulations that the Welch test incorrectly rejects the null 

hypotheses or that not all the comparison intervals overlap. The target alpha is 𝛼 = 0.05 in these 

examples. These simulations cover various cases of unequal standard deviations and sample 

sizes; each position along the horizontal axis represents a different case. 
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Figure 2  Welch test compared with two methods of calculating comparison intervals for 3 

samples 
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Figure 3  Welch test compared with two methods of calculating comparison intervals for 5 

samples 
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Figure 4  Welch test compared with two methods of calculating comparison intervals for 7 

samples  

These results show simulated alpha values in a narrow range around the target value of 0.05. 

Also, the results using the Games-Howell-based method implemented in release 17 of Minitab 

are arguably more closely aligned with the results for the Welch test than was the method used 

in release 16 of Minitab. 
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There is evidence that the coverage probability of intervals may be sensitive to unequal standard 

deviations. But the sensitivity is not nearly as extreme as that of the F-test. The graph below 

illustrates this dependence in the case of k = 5. 

 

Figure 5  Results of simulation with unequal standard deviations 

Using the hypothesis test and comparison intervals 
together 
In rare cases, it is possible that the hypothesis test and the comparison will not agree about 

rejecting the null hypothesis. The test can reject the null hypothesis while the comparison 

intervals all still overlap. Conversely, the test can fail to reject the null hypothesis, while there are 

intervals that do not overlap. These disagreements are rare because both methods have the 

same probability of rejecting the null hypothesis when it is true. 

When this happens, we first consider the test results and use the comparisons to investigate 

further in the event of a significant test. If the test rejects the null hypothesis at significance level 

𝛼, then any comparison interval that fails to overlap with at least one other is marked in red. This 

is used as a visual cue that the corresponding group mean differs from at least one other. Even if 

all the intervals overlap, the pair with the smallest amount of overlap is colored red if the test is 

significant to indicate the “most likely” difference (see Figure 6 below). This is a somewhat 

arbitrary choice, especially if there are other pairs that have very little overlap. But no other pair 

has a bound on its difference that is closer to zero. 
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Figure 6  Significant test, intervals marked in red even when they overlap among samples 

If the test fails to reject the null hypothesis, then none of the intervals are marked in red, even if 

there are intervals that do not overlap (see Figure 7 below). Although the intervals imply that 

there are differences among the means, keep in mind that failure to reject the null hypothesis is 

not the same as concluding that the null hypothesis is true. It only indicates that the observed 

differences are not large enough to rule out chance as the cause. It is also worth noting that the 

gap between the non-overlapping intervals will typically be very small in this situation, so that 

very small differences are still consistent with the intervals, and do not necessarily indicate that 

there is a difference with practical implications. 
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Figure 7  Test fails, no intervals marked in red even when there is no overlap among samples 
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Appendix C: Sample size 
In one-way ANOVA, the parameters being tested are the population means μ1, μ2, … μk of the 

different groups or populations. The parameters satisfy the null hypothesis if they are all equal. If 

there are any differences among the means, they satisfy the alternative hypothesis. The 

probability of rejecting the null hypothesis should be no more than 𝛼 for means that satisfy the 

null hypothesis. The actual probabilities depend on the standard deviation of the distributions 

and on the size of the samples. The power to detect any deviation from the null hypothesis 

increases with smaller standard deviations or larger samples. 

We can compute the power of the F-test under the assumption of normal distributions with 

equal standard deviations using a non-central F distribution. The non-centrality parameter is:  

𝜃𝐹 = ∑ 𝑛𝑖 (𝜇𝑖 − 𝜇)2 𝜎2⁄𝑘
𝑖=1   

where μ is the weighted average of the means: 

𝜇 =  ∑ 𝑛𝑖𝜇𝑖
𝑘
𝑖=1 / ∑ 𝑛𝑖

𝑘
𝑖=1  , 

and σ is the standard deviation, which is assumed to be constant. All other things being equal, 

the power increases with θF. This is the precise sense in which the power increases as the means 

deviate farther from the null hypothesis. 

Unlike the F-test, the Welch test does not have a simple exact formula for power. But we will 

look at two reasonably good approximate formulas. The first uses a noncentral F-distribution in 

a way similar to the power of the F-test. The noncentrality parameter will use is still of the form: 

𝜃𝑊  =  ∑ 𝑤𝑖(𝜇𝑖 –  𝜇)2

𝑘

𝑖=1

 

where μ is the weighted average: 

𝜇 = ∑ 𝑤𝑖𝜇𝑖
𝑘
𝑖=1 ∑ 𝑤𝑗

𝑘
𝑗=1⁄   

but the weights will depend on the standard deviations as well as the sample sizes, i.e. 𝑤𝑖 =

 𝑛𝑖 𝜎𝑖
2⁄  or 𝑤𝑖 =  𝑛𝑖 𝑠𝑖

2⁄ , depending on whether we are simulating the results for known standard 

deviations 𝜎𝑖
2 or estimating the power based on sample standard deviations 𝑠𝑖

2. The 

approximate power is then computed as: 

𝑃(𝐹𝑘 – 1,𝑓,𝜃𝑤
≥  𝐹𝑘 – 1,𝑓,1 – 𝛼) 

where the denominator degrees of freedom are 

𝑓 =  
𝑘2−1

3 ∑ (1− 𝑤𝑖 ∑ 𝑤𝑗
𝑘
𝑗=1⁄ ) (𝑛𝑖−1)⁄𝑘

𝑖=1

. 

As we show below, this provides reasonably good approximations to the power observed in 

simulations. And while we use a different approximation to compute the power in the Assistant 

menu, this one provides good insight, and is the basis for selecting the configuration of means 

at which we compute the power in the Assistant menu. 
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Configuration of means 
In keeping with the approach used for power and sample size in Minitab (Stat > ANOVA > One-

Way), the Assistant does not ask the user for a full set of means at which to evaluate power. 

Instead, it asks the user for a difference between means that has practical implications. For a 

given difference, there are an infinite number of possible configurations of means in which the 

largest and smallest means differ by that amount. For example, all of the following have a 

maximum difference of 10 among a set of five means: 

μ1 = 0, μ2 = 5, μ3 = 5, μ4 = 5, μ5 = 10; 

μ1 = 5, μ2 = 0, μ3 = 10, μ4 = 10, μ5 = 0; 

μ1 = 0, μ2 = 10, μ3 = 0, μ4 = 0, μ5 = 0; 

and there are infinitely many more. 

We follow the approach used for power and sample size in Minitab (Stat > Power and Sample 

Size > One-Way ANOVA), namely picking a case where all but two of the means are at the 

(weighted) average of the means, and the remaining two means differ by the stated amount. 

However, because of the possibility of unequal variances and sample sizes, the non-centrality 

parameter (and hence the power) still depend on which two means are assumed to differ. 

Consider the configuration of means μ1, … , μk in which all but two of the means are equal to the 

overall weighted mean μ, and two means, say μi > μj, differ from each other and from the overall 

mean. Let Δ = μi – μj denote the difference between the two means. Let Δi = μi – μ and Δj = μ – 

μj. Hence Δ = Δi + Δj. Also, since μ represents the weighted mean of all k means, and (k – 2) of 

the means are assumed to equal μ, we have: 

𝜇 =  [ ∑ 𝑤𝑙𝜇𝑙 + 𝑤𝑖(𝜇 +  ∆𝑖) 

𝑙 ≠𝑖,𝑗

+  𝑤𝑗(𝜇 −  ∆𝑗)] ∑ 𝑤𝑙

𝑘

𝑙=1

⁄ =  𝜇 + (𝑤𝑖∆𝑖 − 𝑤𝑗∆𝑗) ∑ 𝑤𝑙

𝑘

𝑙=1

.⁄  

Hence: 

𝑤𝑖∆𝑖= 𝑤𝑗∆𝑗 = 𝑤𝑗(∆ −  ∆𝑖) , 

and therefore, 

∆𝑖 =
𝑤𝑗

𝑤𝑖 + 𝑤𝑗
∆ 

∆𝑗 =
𝑤𝑖

𝑤𝑖 + 𝑤𝑗
∆ 

 



 

ONE-WAY ANOVA 28 

For this particular configuration of means, we can compute the noncentrality parameter related 

to the Welch test: 

𝜃𝑊 =  𝑤𝑖(𝜇𝑖 −  𝜇)2  +  𝑤𝑗(𝜇𝑗 −  𝜇)
2
 

=  
𝑤𝑖𝑤𝑗

2∆2  + 𝑤𝑗𝑤𝑖
2∆2

(𝑤𝑖 + 𝑤𝑗)
2 =  

𝑤𝑖𝑤𝑗∆2

𝑤𝑖 + 𝑤𝑗
 

This quantity is increasing in wi for fixed wj and vice versa. Therefore it is maximized at the pair  

(i, j) with the two largest weights and minimized at the pair with the two smallest weights. All the 

power computations consider these two extreme cases, which maximize and minimize the 

power under the assumption that exactly two means differ from the overall weighted average of 

means. 

If you specify a difference for the test, the minimum and maximum power values are evaluated 

for this difference. The range of these powers is indicated on the reports relative to a color-

coded bar on which powers at or below 60% are in red, powers at or above 90% are in green, 

and powers between 60% and 90% are in yellow. The Report Card results depend on where the 

range of powers falls relative to this color-coded scale. If the entire range is in the red, then the 

power for any pair of groups is less than or equal to 60%, and the red icon appears on the 

report card to indicate a problem of insufficient power. If the entire range is in the green, the 

power for any group is at least 90%, and the green icon on the Report Card indicates the 

condition of sufficient power. All other conditions are treated as intermediate situations 

indicated by a yellow icon on the Report Card. 

In cases where the green condition is not met, the Assistant computes a sample size which 

would lead to the green condition given the user-specified difference and the observed sample 

standard deviations. Estimated power depends on the sample sizes via the weights 𝑤𝑖  =  𝑛𝑖 𝑠𝑖
2⁄ . 

If all samples are assumed to have the same sample size, then the two smallest weights 

correspond to the two groups with the largest sample standard deviations. The Assistant finds a 

sample size that gives power of at least 90% if the specified difference is between the two 

groups with the greatest variability. Hence, taking a sample size at least this large for all groups 

would result in the full range of power values being at least 90%, which satisfies the green 

condition. 

If the user does not specify a difference for the power computation, then the Assistant finds the 

largest difference at which the maximum of the range of computed powers would be 60%. This 

value is labeled at the boundary between the red and yellow sections of the bar, corresponding 

to 60% power. It also finds the smallest difference at which the minimum of the range of 

computed powers would be 90%. This value is labeled at the boundary between the yellow and 

green sections of the bar, corresponding to 90% power. 
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Power calculation 
The power is computed using the approximation due to Kulinskaya et al. (2003): 

Define: 

𝜆 =  ∑ 𝑤𝑖(𝜇𝑖  –  𝜇)2𝑘
𝑖=1  , 

𝐴 =  ∑ ℎ𝑖
𝑘
𝑖=1  ,  

𝐵 =  ∑ 𝑤𝑖(𝜇𝑖 –  𝜇)2(1 – 𝑤𝑖/𝑊)/(𝑛𝑖 –  1)𝑘
𝑖=1  , 

𝐷 =  ∑ 𝑤𝑖
2(𝜇𝑖 –  𝜇)4/(𝑛𝑖 –  1)𝑘

𝑖=1  , 

𝐸 =  ∑ 𝑤𝑖
3(𝜇𝑖 –  𝜇)6/(𝑛𝑖 –  1)2𝑘

𝑖=1 . 

The first three cumulants of the numerator ∑ 𝑤𝑖(𝑥̅𝑖 – 𝜇̂)2𝑘
𝑖=1   of the Welch statistic can be 

estimated as: 

𝜅1  =  𝑘 –  1 +  𝜆 +  2𝐴 +  2𝐵, 

𝜅2  =  2(𝑘 –  1 +  2𝜆 +  7𝐴 +  14𝐵 +  𝐷), 

𝜅3  =  8(𝑘 –  1 +  3𝜆 +  15𝐴 +  45𝐵 +  6𝐷 +  2𝐸). 

Let Fk – 1, f, 1 – α denote the (1 – α) quantile of the F(k – 1, f) distribution. Recall that W* ≥ Fk – 1, f, 1 – α 

is the criterion for rejecting the null hypothesis in a size α Welch test. 

Let  

𝑞 =  (𝑘 –  1) [1 + 
2(𝑘 – 2)𝐴

𝑘2 – 1
] 𝐹𝑘 – 1,𝑓,1 – 𝛼 , 

𝑏 =  𝜅1  −  2𝜅2
2/𝜅3, 

𝑐 =  𝜅3 (4𝜅2)⁄  [Note: the expression for c is shown in Kulinskaya et al. (2003) without the 

parentheses.] 

𝜈 =  8𝜅2
3/𝜅3

2. 

Then the estimated approximate power of the Welch test is: 

𝑃(𝜒𝑣
2 ≥

𝑞 − 𝑏

𝑐
) 

where 𝜒𝑣
2 is a chi-square random variable with ν degrees of freedom. 
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The following results compare the power for the two approximation methods and the simulated 

power for a range of examples, based on 10,000 simulations. 

Table 3  Power calculations for the two approximation methods compared to simulated power 

Example alpha Simulated 
power 

Noncentral F Kulinskaya et 
al. 

μ’s: 0, 0, 0, -0.1724, 0.8276 

σ s: 2, 2, 2, 2, 4 

 

0.10 

0.05 

0.01 

0.1372 

0.0739 

0.0195 

0.135702 

0.072563 

0.016587 

0.135795 

0.069512 

0.012538 

μ’s: 0, 0, 0, -0.3448, 1.6552 

σ s: 2, 2, 2, 2, 4 

 

0.10 

0.05 

0.01 

0.2498 

0.1574 

0.0541 

0.251064 

0.153128 

0.045211 

0.257455 

0.156215 

0.042195 

μ’s: 0, 0, 0, -0.5172, 2.4828 

σ s: 2, 2, 2, 2, 4 

 

0.10 

0.05 

0.01 

0.4534 

0.3211 

0.1273 

0.445570 

0.311994 

0.121225 

0.453506 

0.321575 

0.125065 

μ’s: 0, 0, 0, -0.6896, 3.3104 

σ s: 2, 2, 2, 2, 4 

 

0.10 

0.05 

0.01 

0.6620 

0.5219 

0.2842 

0.671317 

0.533819 

0.271316 

0.670296 

0.538617 

0.282759 

μ’s: 0, 0, 0, -0.8620, 4.1380 

σ s: 2, 2, 2, 2, 4 

 

0.10 

0.05 

0.01 

0.8417 

0.7382 

0.4883 

0.852589 

0.752173 

0.487601 

0.846697 

0.746121 

0.493230 

μ’s: 0, 0, 0, -1.0344, 4.9656 

σ s: 2, 2, 2, 2, 4 

 

0.10 

0.05 

0.01 

0.9429 

0.8866 

0.6910 

0.952077 

0.901485 

0.711055 

0.954929 

0.897937 

0.703379 

μ’s: 0, 0, 0, 0, 0, -0.148148, 1.85185 

σ s: 2, 2, 2, 2, 2, 2, 5 

 

0.10 

0.05 

0.01 

0.2011 

0.1201 

0.0385 

0.189392 

0.108986 

0.028986 

0.200114 

0.117420 

0.031456 

μ’s: 0, 0, 0, 0, 0, -0.296296, 3.70370 

σ s: 2, 2, 2, 2, 2, 2, 5 

 

0.10 

0.05 

0.01 

0.4942 

0.3677 

0.1770 

0.485917 

0.351593 

0.149041 

0.500143 

0.375296 

0.177189 

μ’s: 0, 0, 0, 0, 0, -0.444444, 5.55556 

σ s: 2, 2, 2, 2, 2, 2, 5 

 

0.10 

0.05 

0.01 

0.8125 

0.7131 

0.4876 

0.829702 

0.727384 

0.474291 

0.819542 

0.720807 

0.494690 
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Example alpha Simulated 
power 

Noncentral F Kulinskaya et 
al. 

μ’s: 0, 0, 0, 0, 0, -0.592593, 7.40741 

σ s: 2, 2, 2, 2, 2, 2, 5 

 

0.10 

0.05 

0.01 

0.9645 

0.9286 

0.7938 

0.977211 

0.949997 

0.831174 

0.984213 

0.949239 

0.814067 

μ’s: 0, 0, 0, 0, 0, -0.740741, 9.25926 

σ s: 2, 2, 2, 2, 2, 2, 5 

 

0.10 

0.05 

0.01 

0.9961 

0.9895 

0.9528 

0.998947 

0.996653 

0.977536 

1.00000 

1.00000 

0.98705 

μ’s: 0, 0, 0, 0, 0, -0.888889, 11.1111 

σ s: 2, 2, 2, 2, 2, 2, 5 

 

0.10 

0.05 

0.01 

0.9999 

0.9995 

0.9943 

0.999985 

0.999926 

0.998910 

1.00000 

1.00000 

1.00000 

μ’s: 0, 0, 0, 0, 0, -0.518519, 6.48148 

σ s: 2, 2, 2, 2, 2, 2, 5 

 

0.10 

0.05 

0.01 

0.9059 

0.8403 

0.6511 

0.929392 

0.868721 

0.671210 

0.924696 

0.856720 

0.666520 

μ’s: 0, 0, 0, 0, 0, -.5, .5 

σ s: 2, 2, 2, 2, 2, 2, 2 

 

0.10 

0.05 

0.01 

0.1870 

0.1098 

0.0315 

0.186658 

0.106600 

0.027773 

0.183290 

0.100189 

0.021332 

μ’s: 0, 0, 0, 0, 0, -1, 1 

σ s: 2, 2, 2, 2, 2, 2, 2 

 

0.10 

0.05 

0.01 

0.4734 

0.3394 

0.1378 

0.474736 

0.338655 

0.137788 

0.472469 

0.334430 

0.128693 

μ’s: 0, 0, 0, 0, 0, -1.5, 1.5 

σ s: 2, 2, 2, 2, 2, 2, 2 

 

0.10 

0.05 

0.01 

0.8228 

0.7112 

0.4391 

0.817355 

0.707319 

0.441154 

0.810181 

0.698461 

0.431868 

μ’s: 0, 0, 0, 0, 0, -2, 2 

σ s: 2, 2, 2, 2, 2, 2, 2 

 

0.10 

0.05 

0.01 

0.9691 

0.9312 

0.7817 

0.973246 

0.940585 

0.799339 

0.973319 

0.936546 

0.785099 

μ’s: 0, 0, 0, 0, 0, -2.5, 2.5 

σ s: 2, 2, 2, 2, 2, 2, 2 

 

0.10 

0.05 

0.01 

0.9984 

0.9936 

0.9587 

0.998579 

0.995330 

0.967674 

0.999763 

0.997481 

0.966249 

μ’s: 0, 0, 0, 0, 0, -3, 3 

σ s: 2, 2, 2, 2, 2, 2, 2 

 

0.10 

0.05 

0.01 

1.0000 

0.9997 

0.9959 

0.999975 

0.999870 

0.997927 

1.00000 

1.00000 

0.99961 
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Example alpha Simulated 
power 

Noncentral F Kulinskaya et 
al. 

μ’s: 0, 0, 0, 0, 0, -3.5, 3.5 

σ s: 2, 2, 2, 2, 2, 2, 2 

 

0.10 

0.05 

0.01 

1.00000 

1.00000 

0.99998 

1.00000 

1.00000 

0.99995 

1.00000 

1.00000 

1.00000 

μ’s: 0, 0, 0, 0, 0, -1.75, 1.75 

σ s: 2, 2, 2, 2, 2, 2, 2 

 

0.10 

0.05 

0.01 

0.9140 

0.8418 

0.6190 

0.921225 

0.852755 

0.633815 

0.916652 

0.843856 

0.620704 

μ’s: 0, -0.5, 0.5 

σ s: 2, 2, 2 

 

0.10 

0.05 

0.01 

0.2548 

0.1549 

0.0470 

0.259249 

0.160861 

0.049045 

0.257149 

0.156251 

0.042292 

μ’s: 0, -1, 1 

σ s: 2, 2, 2 

 

0.10 

0.05 

0.01 

0.6540 

0.5205 

0.2612 

0.659073 

0.522885 

0.263550 

0.654105 

0.515816 

0.252469 

μ’s: 0, -1.5, 1.5 

σ s: 2, 2, 2 

 

0.10 

0.05 

0.01 

0.9364 

0.8747 

0.6614 

0.935939 

0.875620 

0.664478 

0.937768 

0.872608 

0.652563 

μ’s: 0, -1.75, 1.75 

σ s: 2, 2, 2 

 

0.10 

0.05 

0.01 

0.9810 

0.9522 

0.8251 

0.981434 

0.956100 

0.830726 

0.986815 

0.959796 

0.823624 

μ’s: 0, -2, 2 

σ s: 2, 2, 2 

 

0.10 

0.05 

0.01 

0.9953 

0.9878 

0.9308 

0.995969 

0.988175 

0.931922 

0.999332 

0.993705 

0.933446 

μ’s: 0, -2.5, 2.5 

σ s: 2, 2, 2 

 

0.10 

0.05 

0.01 

0.9999 

0.9997 

0.9949 

0.999923 

0.999634 

0.994725 

1.00000 

1.00000 

0.99909 

μ’s: 0, -3, 3 

σ s: 2, 2, 2 

 

0.10 

0.05 

0.01 

1.0000 

1.0000 

0.9999 

1.00000 

1.00000 

0.99985 

1.00000 

1.00000 

1.00000 

μ’s: 0, -3.5, 3.5 

σ s: 2, 2, 2 

 

0.10 

0.05 

0.01 

1.0000 

1.0000 

0.9999 

1.00000 

1.00000 

1.00000 

1.00000 

1.00000 

1.00000 
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Example alpha Simulated 
power 

Noncentral F Kulinskaya et 
al. 

μ’s: 0, -0.142857, 0.857143 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.1452 

0.0790 

0.0223 

0.143156 

0.077699 

0.018200 

0.146824 

0.077538 

0.014338 

μ’s: 0, -0.285714, 1.71429 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.2765 

0.1787 

0.0624 

0.274240 

0.170628 

0.051588 

0.286222 

0.179469 

0.050335 

μ’s: 0, -0.428571, 2.57143 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.4861 

0.3487 

0.1467 

0.476925 

0.338626 

0.132405 

0.490018 

0.355743 

0.141352 

μ’s: 0, -0.50000, 3 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.5846 

0.4425 

0.2107 

0.588533 

0.444491 

0.197290 

0.596795 

0.460707 

0.212798 

μ’s: 0, -0.571429, 3.42857 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.6933 

0.5631 

0.3052 

0.694684 

0.555731 

0.279131 

0.696773 

0.567129 

0.299302 

μ’s: 0, -0.714286, 4.28571 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.8480 

0.7402 

0.4871 

0.861469 

0.759703 

0.480052 

0.859329 

0.759762 

0.497421 

μ’s: 0, -0.857143, 5.14286 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.9434 

0.8869 

0.6649 

0.952562 

0.898817 

0.687058 

0.961913 

0.902716 

0.692591 

μ’s: 0, -1, 6 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.9849 

0.9609 

0.8294 

0.987981 

0.967589 

0.847436 

0.999989 

0.985049 

0.853787 

μ’s: 0, -1.14286, 6.85714 

σ s: 2, 2, 4 

 

0.10 

0.05 

0.01 

0.9976 

0.9890 

0.9222 

0.997776 

0.992220 

0.940972 

1.00000 

1.00000 

0.96383 
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Example alpha Simulated 
power 

Noncentral F Kulinskaya et 
al. 

μ’s: 1, 2, 3 

σ s: 0.3, 2.4, 3.6 

 

0.10 

0.05 

0.01 

0.8838 

0.7995 

0.5632 

0.882194 

0.797869 

0.556486 

0.884649 

0.802137 

0.563208 

μ’s: 1, 2, 3 

σ s: 2.77489, 2.77489, 2.77489 

 

0.10 

0.05 

0.01 

0.5649 

0.4305 

0.1994 

0.566831 

0.431302 

0.201329 

0.565141 

0.428126 

0.195734 

 

The above results are summarized in the below graph, which shows the discrepancies between 

each approximation and the value of power estimated by simulation. 

 

Figure 8  Comparison of two power approximations and the power estimated by the simulation 
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Appendix D: Normality 
In this section, we present the simulations that examine the performance of the Welch test and 

comparison intervals with samples of small to moderate size from several nonnormal 

distributions. 

The tables below summarize simulation results for different types of distributions under the null 

hypotheses of equal means. For these examples, all standard deviations are also equal and all 

samples are of equal size. The number of samples is k = 3, 5, or 7.  

Each cell shows the estimate of the Type I error based on 10,000 simulations. The target 

significance level (target 𝛼) is 0.05. 

Table 4  Simulation results of the Welch test with equal mean for different distributions 

 Sample size n = 10 Sample size n = 15 

Distribution k = 3 k = 5 k = 7 k = 3 k = 5 k = 7 

N(0,1) 0.0490 0.0486 0.0512 0.0534 0.0522 0.0550 

T(3) 0.0371 0.0361 0.0348 0.0353 0.0385 0.0365 

T(5) 0.0440 0.0425 0.0439 0.0435 0.0428 0.0428 

Laplace(0,1) 0.0433 0.0354 0.0345 0.0445 0.0397 0.0407 

Uniform(-1, 1) 0.0544 0.0640 0.0718 0.0517 0.0573 0.0585 

Beta(3, 3) 0.0504 0.0577 0.0622 0.0501 0.0538 0.0564 

Exponential 0.0508 0.0621 0.0748 0.0483 0.0633 0.0779 

Chi-square(3) 0.0473 0.0579 0.0753 0.0499 0.0588 0.0703 

Chi-square(5) 0.0458 0.0594 0.0643 0.0504 0.0606 0.0679 

Chi-square(10) 0.0463 0.0510 0.0585 0.0463 0.0552 0.0567 

Beta(8, 1) 0.0500 0.0622 0.0775 0.0549 0.0653 0.0760 

 

The Type I error rates are all within 3 percentage points of the target 𝛼 even with samples of size 

10. Larger deviations tend to occur with more groups and with distributions that are far from 

normal. At sample sizes of 10, the only cases where the acceptance probability is off by more 

than 2 percentage points are for k = 7. These occur for the uniform distribution, which has much 

shorter tails than the normal, and for the highly skewed exponential, chi-square(3), and  

beta(8, 1) distributions. Increasing the sample sizes to 15 markedly improves the results for the 

uniform distribution, but not for the two highly skewed distributions. 
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We performed a similar simulation for comparison intervals. The simulated 𝛼 in this case is the 

number of simulations out of 10,000 in which some intervals do not overlap. The target 𝛼 =

0.05. 

Table 5  Simulation results of comparison intervals with equal means for different distributions 

 Sample size n = 10 Sample size n = 15 

Distribution k = 3 k = 5 k = 7 k = 3 k = 5 k = 7 

N(0,1) 0.0493 0.0494 0.0469 0.0538 0.0518 0.0561 

t(3) 0.0378 0.0321 0.0254 0.0347 0.0343 0.0289 

t(5) 0.0449 0.0399 0.0361 0.0447 0.0444 0.0412 

Laplace(0,1) 0.0438 0.0305 0.0246 0.0456 0.0366 0.0348 

Uniform(-1, 1) 0.0559 0.0605 0.0699 0.0534 0.0607 0.0590 

Beta(3, 3) 0.0515 0.0569 0.0615 0.0510 0.0553 0.0568 

Exponential 0.0353 0.0254 0.0207 0.0346 0.0310 0.0275 

Chi-square(3) 0.0375 0.0305 0.0296 0.0384 0.0359 0.0339 

Chi-square(5) 0.0405 0.0390 0.0353 0.0417 0.0433 0.0416 

Chi-square(10) 0.0425 0.0428 0.0447 0.0435 0.0476 0.0464 

Beta(8, 1) 0.0381 0.0352 0.0287 0.0459 0.0428 0.0403 

 

As with the Welch test, the Type I error rates are all within 3 percentage points of the target 𝛼 

even with samples of size 10. Larger deviations tend to occur with more samples and with 

distributions that are far from normal. At sample sizes of 10, the error rates are sometimes off by 

more than 2 percentage points for k = 7 (and in one case, for k = 5). These cases occur for the 

extremely heavy-tailed t distribution with 3 degrees of freedom, the Laplace distribution, and 

the highly skewed exponential and Chi-square (3) distributions. Increasing the sample sizes to 15 

improves the results, leaving only the t(3) and exponential distributions with simulated 𝛼 values 

that are off-target by more than 2 percentage points. Note that unlike the results for the Welch 

test, the larger deviations for comparison intervals are on the conservative side. 

One-way ANOVA in the Assistant allows up to k = 12 samples, so next we consider results for 

more than 7 samples. The table below shows the Type I error rates using the Welch test for 

nonnormal data in k = 9 groups. Again, the target 𝛼 = 0.05. 
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Table 6  Simulation results of Welch test for different distributions with 9 samples 

Distribution k = 9 

t(3) 0.0362 

t(5) 0.0426 

Laplace(0,1) 0.0402 

Uniform(-1, 1) 0.0625 

Beta(3, 3) 0.0584 

Exponential 0.0885 

Chi-square(3) 0.0774 

Chi-square(5) 0.0686 

Chi-square(10) 0.0581 

Beta(8, 1) 0.0863 

 

As might be expected, the highly skewed distributions show the largest deviations from the 

target 𝛼. Even so, none of the error rates deviate from the target by more than 4 percentage 

points, although the deviation for the exponential distribution is close. The Report Card treats 

samples of size 15 sufficient not to flag a problem for nonnormal data because all the results are 

at least reasonably close to the target 𝛼. 

Samples of size n = 15 do not perform as well when we get to k = 12 samples. Below we 

consider the simulated results for the Welch test for a range of sample sizes using extremely 

nonnormal distributions, which will assist us in developing a reasonable criterion for the sample 

size. 

Table 7  Simulation results of Welch test for different distributions with 12 samples 

n T(3) Uniform Chi-square(5) 

10 0.0397 0.0918 0.0792 

15 0.0351 0.0695 0.0717 

20 0.0362 0.0622 0.0671 

30 0.0408 0.0573 0.0657 
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For these distributions n = 15 is acceptable if we are willing to accept a deviation of slightly over 

2 percentage points from the target 𝛼. To keep the deviation below 2 percentage points the 

sample size should be 20. Now, we consider the results from the more skewed chi-square (3) 

and exponential distributions. 

Table 8  Simulation results of Welch test for chi-square and exponential distributions with 12 

samples 

n Chi-square(3) Exponential 

10 0.1013 0.1064 

15 0.0854 0.1079 

20 0.0850 0.0951 

30 0.0746 0.0829 

40 0.0727 0.0735 

50 0.0675 0.0694 

 

These highly skewed distributions present more of a challenge. If we are willing to accept a 

deviation of well over 3 percentage points from the target 𝛼 = 0.05, then n = 15 could be 

considered sufficient even for the chi-square (3) distribution, but the exponential distribution 

would require something closer to n = 30. While the criterion of a specific sample size is 

somewhat arbitrary, and that n = 20 works quite well for a wide range of distributions and 

marginally well for extremely skewed distributions, we use n = 20 as the minimum 

recommended sample size for 10 to 12 samples. Clearly, if there is a need to keep the deviation 

small even for extremely skewed distributions, then larger samples are recommended. 
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