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MINITAB ASSISTANT WHITE PAPER 

This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

1-Sample Standard Deviation 
Test 

Overview 
The 1-Sample Standard Deviation test is used to estimate the variability of your process and to 

compare the variability with a target value. Typically, variability is measured using the variance 

or, equivalently, the standard deviation. 

Many statistical methods have been developed to evaluate the variance of a population, each 

with its own strengths and limitations. The classical chi-square method used to test the variance 

is likely the most commonly used, but it is extremely sensitive to the assumption of normality 

and can produce extremely inaccurate results when the data are skewed or heavy-tailed. Other 

methods have also been developed, but these too have drawbacks. For example, some methods 

are valid only for large samples or for data from a symmetric distribution (see Appendix A). 

In Minitab 15, we use an alternative large-sample method that we derived from a scaled chi-

squared approximation to the distribution of the sample variance by Box (1953). This method, 

referred to as the adjusted degrees of freedom (AdjDF) method, is less sensitive to the normal 

assumption for sufficiently large samples and has been shown to produce more accurate 

confidence intervals than other methods (Hummel, Banga, & Hettmansperger, 2005). More 

recently, however, a revised statistical method by Bonett (2006) has been developed that 

appears to provide better approximate confidence intervals.  

In this paper, we evaluate the performance of Bonett’s method. In addition, for sample size 

planning, we investigate the power function for the equivalent testing procedure associated with 

Bonett’s confidence intervals. Based on our results, we use the Bonett method for the 1-Sample 

Standard Deviation test in the Assistant. We also examine the following data checks that are 

automatically performed and displayed in the Assistant Report Card and explain how they affect 

the results: 

 Unusual data 
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 Validity of test 

 Sample size 
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1-sample standard deviation methods 

Bone method 
Before the publication of Bonett’s method (2006), the most robust procedure for making 

inferences on the variance of a population was most likely the AdjDF method. The published 

results by Bonett, however, show that Bonett’s method provides stable confidence levels that are 

near the target level when samples of moderate size are drawn from nonnormal populations. 

Therefore, Bonett’s method may be preferable for making inferences on the standard deviation 

or variance of a population.  

Objective 

We wanted to compare the performance of Bonett’s method with the AdjDF method when 

making inferences on the variance of a single population. Specifically, we wanted to determine 

which method produces more accurate confidence intervals for the variance (or the standard 

deviation) when samples of various sizes are generated from nonnormal populations. 

We compare confidence intervals because Bonett’s method directly applies to confidence 

intervals. The equivalent hypothesis testing procedure associated with Bonett’s confidence 

intervals can be derived. However, to directly compare our results to those published in Bonett 

(2006), we examined the confidence intervals rather than the hypothesis tests. 

Method 

The AdjDF method and Bonett’s method are both formally defined in Appendix B. To compare 

the accuracy of the confidence intervals for each method, we performed the following 

simulations. First, we generated random samples of various sizes from distributions with 

different properties, such as skewed and heavy-tailed, symmetric and heavy-tailed, and 

symmetric and light-tailed distributions. For each sample size, 10,000 sample replicates were 

drawn from each distribution, and two-sided 95% confidence intervals for the true variance of 

the distribution were calculated using each method. Then we calculated the proportion of the 

10,000 intervals that contained the true variance, referred to as the simulated coverage 

probability. If the confidence intervals are accurate, the simulated coverage probability should 

be close to the target coverage probability of 0.95. In addition, we calculated the average widths 

associated with the confidence intervals for each method. If the confidence intervals of the two 

methods have about the same simulated coverage probabilities, then the method that produces 

shorter intervals (on average) is more precise. For more details, see Appendix C. 

Results 

Bonett’s method generally yields better coverage probabilities and more precise confidence 

intervals than the AdjDF method. As a result, the statistical tests for the variance based on 
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Bonett’s method generate lower Type I and Type II error rates. For this reason, the 1-Sample 

Standard Deviation test in the Assistant is based on Bonett’s method.  

In addition, our results show that if the distribution has moderate to heavy tails, Bonett’s 

method requires larger sample sizes to achieve the target level of accuracy: 

 For distributions with normal or light tails, a sample size of 20 is sufficient. 

 For distributions with moderately heavy tails, the sample size should be at least 80. 

 For distributions with heavy tails, the sample size should be at least 200. 

Therefore, to ensure that the 1-Sample Standard Deviation test or confidence intervals results 

are valid for your data, the Assistant includes a data check to simultaneously evaluate both the 

sample size and the tails of the data distribution (see the Validity of test data check below).  

Performance of theoretical power 
Bonett’s method directly applies to confidence intervals for the variance (or standard deviation). 

However, using the statistical relationship between hypothesis tests and confidence intervals, we 

can derive the equivalent test that is associated with Bonett’s approximate confidence intervals. 

Because an exact power function for this test is unavailable, we needed to derive it. In addition, 

we wanted to evaluate the sensitivity of the theoretical power function to the assumption of 

normality. 

Objective 

We wanted to determine whether we could use the theoretical power function of the test 

associated with Bonett’s confidence intervals to evaluate the power and sample size 

requirements for the 1-Sample Standard Deviation test in the Assistant. To do this, we needed to 

evaluate whether this theoretical power function accurately reflects the actual power of the test 

when normal and nonnormal data are analyzed.  

Method 

The theoretical power function of the test using Bonett’s method is derived in Appendix C. We 

performed simulations to estimate the actual power levels (which we refer to as simulated power 

levels) using Bonett’s method. First, we generated random samples of various sizes from the 

distributions described in the previous study: skewed and heavy-tailed, symmetric and heavy-

tailed, and symmetric and light-tailed distributions. For each distribution, we performed the test 

on each of 10,000 sample replicates. For each sample size, we calculated the simulated power of 

the test to detect a given difference as the fraction of the 10,000 samples for which the test is 

significant. For comparison, we also calculated the corresponding power level using the 

theoretical power function of the test. If the theoretical power function is not too sensitive to 

normality, the theoretical and simulated power levels should be close for normal and nonnormal 

data. For more details, see Appendix D. 
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Results 

Our simulations showed that, when the sample comes from a distribution with normal or light 

tails, the theoretical and simulated power of the test using Bonett’s method are nearly equal. 

When the sample comes from a distribution with heavy tails, however, the theoretical power 

function may be conservative and overestimate the sample size required to achieve a given 

power. Therefore, the theoretical power function of the test ensures that the samples size is 

large enough to detect a practically important difference in the standard deviation regardless of 

the distribution. However, if the data come from heavy-tailed distributions, the estimated 

sample size may be larger than the size that is actually required, which may lead to higher than 

necessary costs when sampling items.  
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Data checks 

Unusual data 
Unusual data are extremely large or small data values, also known as outliers. Unusual data can 

have a strong influence on the results of the analysis and can affect the chances of finding 

statistically significant results, especially when the sample is small. Unusual data can indicate 

problems with data collection, or may be due to unusual behavior of the process you are 

studying. Therefore, these data points are often worth investigating and should be corrected 

when possible.  

Objective 

We wanted to develop a method to check for data values that are very large or very small 

relative to the overall sample and that may affect the results of the analysis.  

Method 

We developed a method to check for unusual data based on the method described by Hoaglin, 

Iglewicz, and Tukey (1986) that is used to identify outliers in boxplots. 

Results 

The Assistant identifies a data point as unusual if it is more than 1.5 times the interquartile range 

beyond the lower or upper quartile of the distribution. The lower and upper quartiles are the 

25th and 75th percentiles of the data. The interquartile range is the difference between the two 

quartiles. This method works well even when there are multiple outliers because it makes it 

possible to detect each specific outlier. 

When checking for unusual data, the Assistant displays the following status indicators in the 

Report Card: 

Status Condition 

 

There are no unusual data points. 

 

At least one data point is unusual and may have a strong influence on the results.  
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Validity of test 
In the 1-Sample Standard Deviation Methods section above, we showed that Bonett’s method 

generally provides better results than the AdjDF method. However, when the tails of a 

distribution are heavier, Bonett’s method requires larger sample sizes to achieve accurate 

results. Thus, a method for assessing the validity of the test must be based on not only the 

sample size but also on the heaviness of the tails of the parent distribution. Gel et al. (2007) 

developed a test to determine whether a sample comes from a distribution with heavy tails. This 

test, called the SJ test, is based on the ratio of the sample standard deviation (s) and the tail 

estimator J (for details, see Appendix E). 

Objective  

For a given sample of data, we needed to develop a rule to assess the validity of Bonett’s 

method by evaluating the heaviness of the tails in the data. 

Method 

We performed simulations to investigate the power of the SJ test to identify heavy-tailed 

distributions. If the SJ test is powerful for moderately large samples, then it can be used to 

discriminate between heavy-tailed and light-tailed distributions for our purposes. For more 

details, see Appendix F. 

Results 

Our simulations showed that when samples are large enough, the SJ test can be used to 

discriminate between heavy-tailed and light-tailed distributions. For samples of moderate or 

large size, smaller p-values indicate heavier tails and larger p-values indicate lighter tails. 

However, because larger samples tend to have smaller p-values than smaller samples, we also 

consider the sample size when determining the heaviness of the tails. Therefore, we developed 

our set of rules for the Assistant to classify the tails of the distribution for each sample based on 

the both sample size and the p-value of the SJ test. To see the specific ranges of p-values and 

sample sizes associated with light, moderate, and heavy-tailed distributions, see Appendix F.  

Based on these results, the Assistant Report Card displays the following status indicators to 

evaluate the validity of the 1-Standard Deviation test (Bonett’s method) for your sample data: 

Status Condition 

 

There is no evidence that your sample has heavy tails. Your sample size is large enough to 
reliably check for this condition.  

OR  

Your sample has moderately heavy or heavy tails. However, your sample size is large enough to 
compensate, so the p-value should be accurate. 
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Status Condition 

 

Your sample has moderately heavy or heavy tails. Your sample size is not large enough to 
compensate. Use caution when interpreting the results. 

OR 

Your sample is not large enough to reliably check for heavy tails. Use caution when interpreting 
the results. 

Sample size 
Typically, a statistical hypothesis test is performed to gather evidence to reject the null 

hypothesis of “no difference”. If the sample is too small, the power of the test may not be 

adequate to detect a difference that actually exists, which results in a Type II error. It is therefore 

crucial to ensure that the sample sizes are sufficiently large to detect practically important 

differences with high probability.  

Objective 

If the data does not provide sufficient evidence to reject the null hypothesis, we want to 

determine whether the sample sizes are large enough for the test to detect practical differences 

of interest with high probability. Although the objective of sample size planning is to ensure that 

sample sizes are large enough to detect important differences with high probability, they should 

not be so large that meaningless differences become statistically significant with high 

probability.  

Method  

The power and sample size analysis for the 1-Sample Standard Deviation test is based on the 

theoretical power function of the test. This power function provides good estimates when data 

have nearly normal tails or light tails, but may produce conservative estimates when the data 

have heavy tails (see the simulation results summarized in Performance of Theoretical Power 

Function in the 1-Sample Standard Deviation Methods section above).  

Results 

When the data does not provide enough evidence against the null hypothesis, the Assistant uses 

the power function of the normal approximation test to calculate the practical differences that 

can be detected with an 80% and a 90% probability for the given sample size. In addition, if the 

user provides a particular practical difference of interest, the Assistant uses the power function 

of the normal approximation test to calculate sample sizes that yield an 80% and a 90% chance 

of detection of the difference. 
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To help interpret the results, the Assistant Report Card for the 1-Sample Standard Deviation test 

displays the following status indicators when checking for power and sample size: 

Status Condition 

 

The test finds a difference between the standard deviation and the target value, so power is not 
an issue. 

OR 

Power is sufficient. The test did not find a difference between the standard deviation and the 
target value, but the sample is large enough to provide at least a 90% chance of detecting the 
given difference. 

 

Power may be sufficient. The test did not find a difference between the standard deviation and 
the target value, but the sample is large enough to provide an 80% to 90% chance of detecting 
the given difference. The sample size required to achieve 90% power is reported.  

 

Power might not be sufficient. The test did not find a difference between the standard deviation 
and the target value, and the sample is large enough to provide a 60% to 80% chance of 
detecting the given difference. The sample sizes required to achieve 80% power and 90% power 
are reported. 

 

Power is not sufficient. The test did not find a difference between the standard deviation and the 
target value, and the sample is not large enough to provide at least a 60% chance of detecting 
the given difference. The sample sizes required to achieve 80% power and 90% power are 
reported. 

 

The test did not find a difference between the standard deviation and the target value. You did 
not specify a practical difference to detect. Depending on your data, the report may indicate the 
differences that you could detect with 80% and 90% chance, based on your sample size and 
alpha. 
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Appendix A: Methods for testing 
variance (or standard deviation) 
The table below summarizes strengths and weaknesses associated with various methods for 

testing the variance.  

Method Comment 

Classical chi-square procedure Extremely sensitive to normality assumption. Even small departures from 
normality can produce inaccurate results regardless of how large the 
sample is. In fact, when the data deviate from normality, increasing the 
sample size decreases the accuracy of the procedure. 

Large-sample method based on the 
asymptotic normal distribution of the 
logarithmic-transform of the sample 
variance 

Generally better than the classical chi-square method but requires larger 
sample sizes to be insensitive to the normality assumption. 

Large-sample method based on 
Edgeworth expansion for one-sided 
(upper tail) tests  

See Lee and Ping (1996). 

Produces acceptable Type I error rates, but requires that data come 
from a symmetric distribution. 

Large-sample method based on an 
approximation of the distribution of 
the sample variance by a scaled chi-
square distribution. The method is 
referred to as the Adjusted degrees 
of freedom (AdjDF) method. 

See Hummel, Banga, and 
Hettmansperger (2005). 

Provides better coverage probability than the method based on the 
asymptotic normal distribution of the logarithmic-transform of the sample 
variance and the nonparametric ABC bootstrap approximation method 
for confidence intervals (Efron and Tibshirani, 1993). 

Used for the 1 Variance test in Minitab 15. 

distribution of the logarithmic-
transform of the sample variance  

See Bonett (2006). 

Provides good coverage probability for confidence intervals even for 
moderately large samples. However, requires much larger samples 
when data come from heavy-tailed distributions. 

Used for the 1 Variance test and the Assistant 1-Sample Standard 
Deviation test in Minitab 16. 
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method and the AdjDF method 
Let 𝑥1, … , 𝑥𝑛 be an observed random sample of size 𝑛 from a population with a finite fourth 

moment. Let 𝑥̅ and 𝑠 be the observed sample mean and standard deviation, respectively. Also, 

let 𝛾 and 𝛾𝑒 be the population kurtosis and kurtosis excess, respectively, so that 𝛾𝑒 = 𝛾 − 3. Thus, 

for a normal population, 𝛾 = 3 and 𝛾𝑒 = 0. Also, let 𝜎2 be the unknown population variance. In 

the sections that follow, we present two methods for making an inference about 𝜎2, the 

adjusted degrees of freedom (AdjDF) method and Bonett’s method.  

Formula B1: AdjDF method 
The AdjDF method is based upon an approximation of the distribution of the sample variance by 

a scaled chi-square distribution (see Box, 1953). More specifically, the first two moments of the 

sample variance are matched with the moments of a scaled chi-square distribution to determine 

the unknown scale and degrees of freedom. This approach yields the following approximate 

two-sided (1 − 𝛼)100 percent confidence interval for the variance: 

[
𝑟𝑠2

𝜒𝑟,𝛼/2
2 ,

𝑟𝑠2

𝜒𝑟,1−𝛼/2
2 ] 

where  

𝑟 =
2𝑛

𝛾𝑒 + 2𝑛/(𝑛 − 1)
 

𝛾𝑒 =
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑(

𝑥𝑖 − 𝑥̅

𝑠
)
4𝑛

𝑖=1

−
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)
 

This estimate of the kurtosis excess is identical to the one used for the Basic Statistics 

commands in Minitab. 

method 
Bonett’s method relies on the well-known classical approach, which uses the central limit 

theorem and the Cramer 𝛿 method to obtain an asymptotic distribution of the log-transform of 

the sample variance. The log-transformation is used to accelerate convergence to normality. 

Using this approach, the approximate two-sided (1 − 𝛼)100 percent confidence interval for the 

variance is defined as: 

[𝑠2 exp(−zα/2se) , 𝑠
2 exp(zα/2se)] 
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where 𝑧𝛼 is the upper percentile of the standard normal distribution, and 𝑠𝑒 is an asymptotic 

estimate of the standard error of the log-transformed sample variance, given as: 

𝑠𝑒 = √
𝛾̂−(𝑛−3)/𝑛

𝑛−1
= √

𝛾̂𝑒+2+3/𝑛

𝑛−1
 

Previously, Hummel et al. (2005) performed simulation studies that demonstrated that the AdjDF 

method is superior to this classical approach. However, Bonett makes two adjustments to the 

classical approach to overcome its limitations. 

The first adjustment involves the estimate of the kurtosis. To estimate kurtosis, Bonett uses the 

following formula: 

𝛾𝑒 =
𝑛

(𝑛 − 1)2
∑(

𝑥𝑖 −𝑚

𝑠
)
4

𝑛

𝑖=1

− 3 

where 𝑚 is a trimmed mean with trim-proportion equal to 1/2√𝑛 − 4. This estimate of kurtosis 

tends to improve the accuracy of the confidence levels for heavy-tailed (symmetric or skewed) 

distributions. 

For the second adjustment, Bonett empirically determines a constant multiplier for the sample 

variance and the standard error. This constant multiplier approximately equalizes the tail 

probabilities when the sample is small, and is given as: 

𝑐 =
𝑛

𝑛 − 𝑧𝛼/2
 

These adjustments yield Bonett’s approximate two-sided (1 − 𝛼)100 percent confidence interval 

for the variance: 

[𝑐𝑠2exp (−c zα/2se), 𝑐𝑠
2exp (c zα/2se)] 
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method versus AdjDF method 

Simulation C1: Comparison of confidence intervals 
We wanted to compare the accuracy of the confidence intervals for the variance that are 

calculated using AdjDF method and Bonett’s method. We generated random samples of 

different sizes (𝑛 = 20, 30, 40, 50, 60, 80, 100, 150, 200, 250, 300) from several distributions and 

calculated the confidence intervals using each method. The distributions included: 

 Standard normal distribution (N(0,1)) 

 Symmetric and light-tailed distributions, including the uniform distribution (U(0,1)) and 

the Beta distribution with both parameters set to 3 (B(3,3)) 

 Symmetric and heavy-tailed distributions, including t-distributions with 5 and 10 degrees 

of freedom (t(5),t(10)), and the Laplace distribution with location 0 and scale 1 (Lpl)) 

 Skewed and heavy-tailed distributions, including the exponential distribution with scale 1 

(Exp) and chi-square distributions with 3, 5, and 10 degrees of freedom (Chi(3), Chi(5), 

Chi(10)) 

 Left-skewed and heavy-tailed distribution; specifically, the Beta distribution with the 

parameters set to 8 and 1, respectively (B(8,1)) 

In addition, to assess the direct effect of outliers, we generated samples from contaminated 

normal distributions defined as 

𝐶𝑁(𝑝, 𝜎) = 𝑝𝑁(0,1) + (1 − 𝑝)𝑁(0, 𝜎) 

where 𝑝 is the mixing parameter and 1 − 𝑝 is the proportion of contamination (which equals the 

proportion of outliers). We selected two contaminated normal populations for the study: 

𝐶𝑁(0.9,3), where 10% of the population are outliers; and 𝐶𝑁(0.8,3), where 20% of the 

population are outliers. These two distributions are symmetric and have long tails due to the 

outliers. 

For each sample size, 10,000 sample replicates were drawn from each distribution and the two-

sided 95% confidence intervals were calculated using each method. The random sample 

generator was seeded so that both methods were applied to the same samples. Based on these 

confidence intervals, we then calculated the simulated coverage probabilities (CovP) and 

average interval widths (AveW) for each method. If the confidence intervals of the two methods 

have about the same simulated coverage probabilities, then the method that produces shorter 

intervals (on average) is more precise. Because we used a target confidence level of 95%, the 

simulation error was √0.95(0.05)/10,000 = 0.2%. 

The simulation results are recorded in Tables 1 and 2 below. 



 

1-SAMPLE STANDARD DEVIATION TEST 15 

Table 1  Simulated coverage probabilities of 95% two-sided confidence intervals for the variance 

calculated using the AdjDF and Bonett’s methods. These samples were generated from 

symmetric distributions with light, normal, nearly normal, or heavy tails. 

 

Distribution 

Symmetric Distributions with Light, 
Normal, or Nearly Normal Tails 

Symmetric Distributions with Heavy Tails  

U(0,1) B(3,3) N(0,1) t(10) Lpl CN(0.8, 
3) 

CN (0.9, 
3) 

T(5) 

Skewness 0 0 0 0 0 0 0 0 

Kurtosis (𝜸𝒆) -1.200 -0.667 0 1.000 3.000 4.544 5.333 6.000 

𝒏 = 𝟏𝟎 

AdjDF CovP 

AveW 

0.910 

0.154 

0.909 

0.087 

0.903 

3.276 

0.883 

5.160 

0.853 

13.924 

0.793 

21.658 

0.815 

14.913 

0.858 

11.742 

Bonett CovP 

AveW 

0.972 

0.242 

0.967 

0.115 

0.962 

3.710 

0.952 

5.134 

0.919 

10.566 

0.891 

15.335 

0.920 

10.367 

0.935 

8.578 

𝒏 = 𝟐𝟎 

AdjDF CovP 

AveW 

0.937 

0.080 

0.937 

0.045 

0.923 

1.572 

0.909 

2.463 

0.881 

5.781 

0.819 

9.265 

0.817 

6.539 

0.868 

5.151 

Bonett CovP 

AveW 

0.953 

0.100 

0.954 

0.051 

0.946 

1.683 

0.934 

2.422 

0.909 

4.932 

0.856 

7.282 

0.864 

4.945 

0.904 

4.026 

𝒏 = 𝟑𝟎 

AdjDF CovP 

AveW 

0.946 

0.061 

0.942 

0.034 

0.933 

1.170 

0.917 

1.764 

0.894 

4.117 

0.851 

6.330 

0.823 

4.557 

0.882 

3.667 

Bonett CovP 

AveW 

0.951 

0.070 

0.950 

0.037 

0.947 

1.221 

0.933 

1.750 

0.909 

3.654 

0.869 

5.383 

0.852 

3.736 

0.907 

2.997 

𝒏 = 𝟒𝟎 

AdjDF CovP 

AveW 

0.953 

0.051 

0.947 

0.028 

0.932 

0.971 

0.922 

1.489 

0.904 

3.246 

0.867 

5.131 

0.833 

3.654 

0.890 

3.024 

Bonett CovP 

AveW 

0.954 

0.057 

0.951 

0.030 

0.941 

1.002 

0.936 

1.469 

0.914 

2.994 

0.879 

4.519 

0.856 

3.128 

0.907 

2.542 
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Distribution 

Symmetric Distributions with Light, 
Normal, or Nearly Normal Tails 

Symmetric Distributions with Heavy Tails  

U(0,1) B(3,3) N(0,1) t(10) Lpl CN(0.8, 
3) 

CN (0.9, 
3) 

T(5) 

Skewness 0 0 0 0 0 0 0 0 

Kurtosis (𝜸𝒆) -1.200 -0.667 0 1.000 3.000 4.544 5.333 6.000 

𝒏 = 𝟓𝟎 

AdjDF CovP 

AveW 

0.951 

0.045 

0.945 

0.025 

0.937 

0.849 

0.925 

1.291 

0.911 

2.789 

0.878 

4.357 

0.838 

3.091 

0.893 

2.603 

Bonett CovP 

AveW 

0.951 

0.049 

0.947 

0.026 

0.944 

0.870 

0.938 

1.280 

0.918 

2.613 

0.888 

3.939 

0.855 

2.729 

0.908 

2.240 

𝒏 = 𝟔𝟎 

AdjDF CovP 

AveW 

0.949 

0.040 

0.943 

0.022 

0.938 

0.766 

0.926 

1.155 

0.913 

2.490 

0.890 

3.857 

0.853 

2.768 

0.899 

2.283 

Bonett CovP 

AveW 

0.949 

0.043 

0.947 

0.023 

0.943 

0.781 

0.935 

1.147 

0.918 

2.354 

0.896 

3.552 

0.868 

2.498 

0.910 

2.023 

𝒏 = 𝟕𝟎 

AdjDF CovP 

AveW 

0.948 

0.037 

0.945 

0.020 

0.940 

0.701 

0.930 

1.056 

0.913 

2.283 

0.890 

3.458 

0.858 

2.475 

0.896 

2.049 

Bonett CovP 

AveW 

0.947 

0.039 

0.946 

0.021 

0.944 

0.713 

0.938 

1.049 

0.918 

2.174 

0.894 

3.227 

0.868 

2.272 

0.905 

1.828 

𝒏 = 𝟖𝟎 

AdjDF CovP 

AveW 

0.947 

0.034 

0.949 

0.019 

0.938 

0.652 

0.929 

0.988 

0.918 

2.089 

0.905 

3.205 

0.869 

2.300 

0.902 

1.906 

Bonett CovP 

AveW 

0.946 

0.036 

0.950 

0.019 

0.942 

0.662 

0.935 

0.982 

0.923 

2.005 

0.907 

3.014 

0.877 

2.133 

0.911 

1.716 

𝒏 = 𝟗𝟎 

AdjDF CovP 

AveW 

0.946 

0.032 

0.947 

0.018 

0.948 

0.611 

0.929 

0.921 

0.918 

1.951 

0.908 

2.982 

0.869 

2.124 

0.901 

1.874 

Bonett CovP 

AveW 

0.945 

0.034 

0.948 

0.018 

0.952 

0.618 

0.936 

0.916 

0.920 

1.882 

0.910 

2.822 

0.874 

1.984 

0.909 

1.646 
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Distribution 

Symmetric Distributions with Light, 
Normal, or Nearly Normal Tails 

Symmetric Distributions with Heavy Tails  

U(0,1) B(3,3) N(0,1) t(10) Lpl CN(0.8, 
3) 

CN (0.9, 
3) 

T(5) 

Skewness 0 0 0 0 0 0 0 0 

Kurtosis (𝜸𝒆) -1.200 -0.667 0 1.000 3.000 4.544 5.333 6.000 

𝒏 = 𝟏𝟎𝟎 

AdjDF CovP 

AveW 

0.947 

0.030 

0.951 

0.017 

0.945 

0.576 

0.933 

0.873 

0.920 

1.830 

0.910 

2.801 

0.885 

2.017 

0.912 

1.658 

Bonett CovP 

AveW 

0.946 

0.032 

0.953 

0.017 

0.948 

0.583 

0.937 

0.869 

0.923 

1.772 

0.912 

2.666 

0.891 

1.899 

0.916 

1.522 

𝒏 = 𝟏𝟓𝟎 

AdjDF CovP 

AveW 

0.949 

0.024 

0.951 

0.014 

0.947 

0.464 

0.936 

0.700 

0.932 

1.470 

0.925 

2.228 

0.896 

1.602 

0.912 

1.325 

Bonett CovP 

AveW 

0.948 

0.025 

0.952 

0.014 

0.949 

0.467 

0.939 

0.698 

0.933 

1.438 

0.924 

2.156 

0.898 

1.539 

0.915 

1.251 

𝒏 = 𝟐𝟎𝟎 

AdjDF CovP 

AveW 

0.943 

0.021 

0.949 

0.012 

0.948 

0.400 

0.938 

0.605 

0.927 

1.265 

0.930 

1.906 

0.914 

1.373 

0.918 

1.178 

Bonett CovP 

AveW 

0.942 

0.021 

0.951 

0.012 

0.949 

0.402 

0.940 

0.603 

0.928 

1.245 

0.930 

1.860 

0.915 

1.333 

0.920 

1.106 

𝒏 = 𝟐𝟓𝟎 

AdjDF CovP 

AveW 

0.952 

0.019 

0.952 

0.010 

0.949 

0.355 

0.942 

0.538 

0.938 

1.120 

0.929 

1.690 

0.909 

1.219 

0.915 

1.037 

Bonett CovP 

AveW 

0.951 

0.019 

0.952 

0.010 

0.949 

0.357 

0.944 

0.537 

0.941 

1.106 

0.929 

1.657 

0.909 

1.190 

0.916 

0.986 

𝒏 = 𝟑𝟎𝟎 

AdjDF CovP 

AveW 

0.950 

0.017 

0.948 

0.009 

0.951 

0.324 

0.940 

0.490 

0.938 

1.019 

0.936 

1.544 

0.920 

1.115 

0.914 

0.933 

Bonett CovP 

AveW 

0.950 

0.017 

0.947 

0.010 

0.951 

0.325 

0.942 

0.489 

0.937 

1.009 

0.929 

1.657 

0.920 

1.093 

0.916 

0.897 
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Table 2  Simulated coverage probabilities of 95% two-sided confidence intervals for the variance 

calculated using the AdjDF and Bonett’s methods. These samples were generated from skew 

distributions with nearly normal, moderately heavy, or heavy tails. 

Distribution Skew Distributions with Nearly Normal or 
Moderately Heavy Tails 

Skew Distributions with 
Heavy Tails 

Chi(10) B(8,1) Chi(5) Chi(3) Exp 

Skewness 0.894 -1.423 1.265 1.633 2 

Kurtosis (𝜸𝒆) 1.200 2.284 2.400 4.000 6 

𝒏 = 𝟏𝟎 

AdjDF CovP 

AveW 

0.869 

93.383 

0.815 

0.065 

0.836 

61.994 

0.797 

47.821 

0.758 

10.711 

Bonett CovP 

AveW 

0.950 

91.006 

0.917 

0.058 

0.938 

53.830 

0.911 

38.137 

0.882 

7.498 

𝒏 = 𝟐𝟎 

AdjDF CovP 

AveW 

0.889 

41.497 

0.862 

0.026 

0.862 

25.479 

0.833 

20.099 

0.811 

4.293 

Bonett CovP 

AveW 

0.932 

41.600 

0.912 

0.026 

0.913 

24.094 

0.893 

17.232 

0.877 

3.370 

𝒏 = 𝟑𝟎 

AdjDF CovP 

AveW 

0.901 

30.021 

0.881 

0.018 

0.880 

18.182 

0.864 

13.630 

0.838 

2.844 

Bonett CovP 

AveW 

0.931 

30.462 

0.920 

0.019 

0.914 

17.858 

0.906 

12.634 

0.885 

2.441 

𝒏 = 𝟒𝟎 

AdjDF CovP 

AveW 

0.909 

24.459 

0.882 

0.015 

0.885 

14.577 

0.867 

10.649 

0.862 

2.193 

Bonett CovP 

AveW 

0.930 

24.952 

0.915 

0.015 

0.913 

14.504 

0.904 

1.991 

0.898 

1.991 
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Distribution Skew Distributions with Nearly Normal or 
Moderately Heavy Tails 

Skew Distributions with 
Heavy Tails 

Chi(10) B(8,1) Chi(5) Chi(3) Exp 

Skewness 0.894 -1.423 1.265 1.633 2 

Kurtosis (𝜸𝒆) 1.200 2.284 2.400 4.000 6 

𝒏 = 𝟓𝟎 

AdjDF CovP 

AveW 

0.912 

21.373 

0.900 

0.013 

0.892 

12.694 

0.871 

9.115 

0.868 

1.861 

Bonett CovP 

AveW 

0.930 

21.814 

0.927 

0.013 

0.916 

12.741 

0.903 

8.897 

0.901 

1.735 

𝒏 = 𝟔𝟎 

AdjDF CovP 

AveW 

0.915 

18.928 

0.908 

0.011 

0.901 

11.338 

0.890 

8.211 

0.875 

1.645 

Bonett CovP 

AveW 

0.930 

19.369 

0.933 

0.012 

0.923 

11.456 

0.917 

8.093 

0.900 

1.554 

𝒏 = 𝟕𝟎 

AdjDF CovP 

AveW 

0.915 

17.513 

0.910 

0.010 

0.904 

10.307 

0.898 

7.461 

0.881 

1.488 

Bonett CovP 

AveW 

0.932 

17.906 

0.932 

0.011 

0.922 

10.464 

0.919 

7.408 

0.906 

1.429 

𝒏 = 𝟖𝟎 

AdjDF CovP 

AveW 

0.920 

16.157 

0.916 

0.009 

0.911 

9.604 

0.904 

6.892 

0.890 

1.349 

Bonett CovP 

AveW 

0.935 

16.537 

0.936 

0.010 

0.929 

9.765 

0.924 

6.882 

0.915 

1.314 

𝒏 = 𝟗𝟎 

AdjDF CovP 

AveW 

0.924 

15.250 

0.918 

0.009 

0.911 

9.007 

0.897 

6.323 

0.894 

1.255 

Bonett CovP 

AveW 

0.938 

15.609 

0.936 

0.009 

0.929 

9.175 

0.918 

6.366 

0.913 

1.230 
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Distribution Skew Distributions with Nearly Normal or 
Moderately Heavy Tails 

Skew Distributions with 
Heavy Tails 

Chi(10) B(8,1) Chi(5) Chi(3) Exp 

Skewness 0.894 -1.423 1.265 1.633 2 

Kurtosis (𝜸𝒆) 1.200 2.284 2.400 4.000 6 

𝒏 = 𝟏𝟎𝟎 

AdjDF CovP 

AveW 

0.926 

14.332 

0.919 

0.008 

0.915 

8.451 

0.908 

6.016 

0.895 

1.171 

Bonett CovP 

AveW 

0.935 

14.664 

0.936 

0.009 

0.931 

8.625 

0.924 

6.063 

0.916 

1.158 

𝒏 = 𝟏𝟓𝟎 

AdjDF CovP 

AveW 

0.933 

11.606 

0.925 

0.007 

0.923 

6.781 

0.913 

4.792 

0.911 

0.933 

Bonett CovP 

AveW 

0.943 

11.846 

0.941 

0.007 

0.936 

6.942 

0.929 

4.875 

0.928 

0.937 

𝒏 = 𝟐𝟎𝟎 

AdjDF CovP 

AveW 

0.935 

9.973 

0.934 

0.006 

0.926 

5.849 

0.916 

4.127 

0.915 

0.799 

Bonett CovP 

AveW 

0.942 

10.185 

0.948 

0.006 

0.936 

5.991 

0.930 

4.212 

0.931 

0.808 

𝒏 = 𝟐𝟓𝟎 

AdjDF CovP 

AveW 

0.938 

8.899 

0.939 

0.005 

0.934 

5.231 

0.926 

3.652 

0.922 

0.705 

Bonett CovP 

AveW 

0.946 

9.078 

0.951 

0.005 

0.944 

5.355 

0.936 

3.735 

0.931 

0.716 

𝒏 = 𝟑𝟎𝟎 

AdjDF CovP 

AveW 

0.942 

8.156 

0.938 

0.005 

0.934 

4.749 

0.931 

3.344 

0.922 

0.640 

Bonett CovP 

AveW 

0.947 

8.314 

0.948 

0.005 

0.943 

4.862 

0.941 

3.419 

0.933 

0.651 
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Our results are very consistent with those published by Bonett (2006). As shown in Tables 1 and 

2, the confidence intervals calculated using Bonett’s method are superior to the confidence 

intervals calculated using the AdjDF method because they yield coverage probabilities closer to 

the target level of 0.95 and narrower confidence intervals, on average. If the confidence intervals 

of the two methods have about the same simulated coverage probabilities, then the method 

that produces shorter intervals (on average) is more precise. This means that the statistical test 

for the variance based on Bonett’s method performs better and results in lower Type I and Type 

II error rates. When sample sizes are large, the two methods yield almost identical results, but 

for small to moderate sample sizes, Bonett’s method is superior.  

Although Bonett’s method generally performs better than the AdjDF method, it consistently 

yields coverage probabilities below the target coverage of 0.95 for heavy-tailed distributions 

(symmetric or skewed) even for extremely large samples (𝑛 > 100). This is illustrated in Figure 1 

below, which plots the simulated coverage probabilities for Bonett’s method against the true 

kurtosis excess of the population for small, moderate, and large sample sizes. 

 

Figure 1  Simulated coverage probabilities for Bonett’s 95% confidence intervals plotted against 

the kurtosis excess of each distribution at various sample sizes.  

As shown in Figure 1, the greater the kurtosis, the larger the sample size that is needed to make 

the simulated coverage probabilities approach the target level. As noted previously, the 

simulated coverage probabilities for Bonett’s method are low for heavy-tailed distributions. 

However, for lighter tailed distributions, such as the uniform and the Beta(3,3) distributions, the 
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simulated coverage probabilities are stable and on target for sample sizes as small as 20. 

Therefore, we base our criterion to determine the validity of Bonett’s method upon both the 

sample size and the heaviness of the tails of the distribution from which the sample is drawn. 

As a first step for developing this criterion, we classify the distributions into three categories 

according to the heaviness of their tails: 

 Light-tailed or normal-tailed distributions (L-type): These are distributions for which 

Bonett’s confidence intervals yield stable coverage probabilities near the target coverage 

level. For these distributions, sample sizes as low as 20 produce accurate results. 

Examples include the uniform distribution, the Beta(3,3) distribution, the normal 

distribution, the t distribution with 10 degrees of freedom, and the chi-square 

distribution with 10 degrees of freedom.  

 Moderately heavy-tailed distributions (M-type): For these distributions, Bonett’s 

method requires a minimum sample size of 80 for the simulated coverage probabilities 

to be close to the target coverage. Examples include the chi-square distribution with 5 

degrees of freedom, and the Beta(8,1) distribution. 

 Heavy-tailed distributions (H-type): These are distributions for which Bonett’s 

confidence intervals yield coverage probabilities that are far below the targeted 

coverage, unless the sample sizes are extremely large (𝑛 ≥ 200). Examples include the t 

distribution with 5 degrees of freedom, the Laplace distribution, the chi-square 

distribution with 3 degrees of freedom, the exponential distribution, and the two 

contaminated normal distributions, CN(0.9,3) and CN(0.8,3). 

Thus, a general rule for evaluating the validity of Bonett’s method requires that we develop a 

procedure to identify which of the 3 distribution types the sample data comes from. We 

developed this procedure as part of the Validity of test data check. For more details, see 

Appendix E.  
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Appendix D: Theoretical power 
We derived the theoretical power function of the test associated with Bonett’s method and 

performed simulations to compare the theoretical and simulated power of the test. If the 

theoretical and simulated power curves are close to each other, then the power and sample size 

analysis based upon on the theoretical power function should yield accurate results.  

method 
As described earlier, Bonett’s method is based upon the well-known classical approach, in which 

the central limit theorem and the Cramer 𝛿 method are used to find an asymptotic distribution 

of the log-transformed sample variance. More specifically, it is established that in large samples, 

ln 𝑆2−ln𝜎2

𝑠𝑒
 is approximately distributed as the standard normal distribution. The denominator, 

𝑠𝑒, is the large sample standard error of the log-transformed sample variance and is given as 

𝑠𝑒 = √
𝛾−(𝑛−3)/𝑛

𝑛−1
 

where 𝛾 is the kurtosis of the unknown parent population. 

It follows that an approximate power function with an approximate alpha level for the two-sided 

test using Bonett’s method may be given as a function of the sample size, the ratio 𝜌 = 𝜎/𝜎0 

and the parent population kurtosis 𝛾 as 

𝜋(𝑛, 𝜌, 𝛾) = 1 −Φ

(

 𝑧𝛼/2 −
ln 𝜌2

√𝛾 − 1 + 3/𝑛
𝑛 − 1 )

 +Φ

(

 −𝑧𝛼/2 −
ln𝜌2

√𝛾 − 1 + 3/𝑛
𝑛 − 1 )

  

where 𝜎0 is the hypothesized value of the unknown standard deviation, Φ is the CDF of the 

standard normal distribution, and 𝑧𝛼 is the upper α percentile point of the standard normal 

distribution. The one-sided power functions can also be obtained from these calculations. 

Note that when planning the sample size for a study, an estimate of the kurtosis may be used in 

place of the true kurtosis. This estimate is usually based on the opinions of experts or the results 

of previous experiments. If that information is not available, it is often a good practice to 

perform a small pilot study to develop the plans for the major study. Using a sample from the 

pilot study, the kurtosis may be estimated as 

𝛾 =
𝑛

(𝑛 − 1)2
∑(

𝑥𝑖 −𝑚

𝑠
)
4

𝑛

𝑖=1

 

where 𝑚 is a trimmed mean with trim-proportion equal to 1/2√𝑛 − 4. 
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Simulation D1: Comparison of actual power versus 
theoretical power 
We designed a simulation to compare estimated actual power levels (referred to as simulated 

power levels) to the theoretical power levels (referred to as approximate power levels) when 

using Bonett’s method to test the variance.  

In each experiment, we generated 10,000 sample replicates, each of size 𝑛, where 𝑛 =

20, 30, 40, 50,… ,120, from each of the distributions described in Simulation C1 (see Appendix C). 

For each distribution and sample size 𝑛, we calculated the simulated power level as the fraction 

of 10,000 random sample replicates for which the two-sided test with alpha level 𝛼 = 0.05 was 

significant. When calculating the simulated power, we used 𝜌 = 𝜎/𝜎0 = 1.25 to obtain relatively 

small power levels. We then calculated the corresponding power levels using the theoretical 

power function for comparison.  

The results are shown in Tables 3 and 4 and graphically represented in Figure 2 below. 

Table 3  Simulated power levels (evaluated at 𝜌 = 𝜎/𝜎0 = 1.25) of a two-sided test for the 

variance based on Bonett’s method compared with theoretical (normal approximation) power 

levels. The samples were generated from symmetric distributions with light, normal, nearly 

normal, or heavy tails. 

𝒏 Power Symmetric Distributions with Light, 
Normal, or Nearly Normal Tails 

Symmetric Distributions with Heavy 
Tails 

U(0,1) B(3,3) N(0,1) t(10) Lpl CN 
(.8,3) 

CN 
(.9,3) 

t(5) 

20 Simul. 

Approx. 

0.521 

0.514 

0.390 

0.359 

0.310 

0.264 

0.237 

0.195 

0.178 

0.137 

0.152 

0.117 

0.139 

0.109 

0.172 

0.104 

30 Simul. 

Approx. 

0.707 

0.717 

0.551 

0.519 

0.441 

0.382 

0.337 

0.276 

0.225 

0.186 

0.186 

0.154 

0.169 

0.143 

0.228 

0.135 

40 Simul. 

Approx. 

0.831 

0.846 

0.679 

0.651 

0.526 

0.490 

0.427 

0.356 

0.285 

0.236 

0.266 

0.192 

0.203 

0.176 

0.285 

0.165 

50 Simul. 

Approx. 

0.899 

0.921 

0.753 

0.754 

0.621 

0.586 

0.505 

0.431 

0.332 

0.284 

0.255 

0.229 

0.238 

0.210 

0.340 

0.196 

60 Simul. 

Approx. 

0.942 

0.961 

0.822 

0.830 

0.701 

0.668 

0.570 

0.501 

0.380 

0.332 

0.285 

0.266 

0.274 

0.243 

0.384 

0.227 

70 Simul. 

Approx. 

0.964 

0.981 

0.866 

0.885 

0.757 

0.737 

0.632 

0.566 

0.424 

0.379 

0.327 

0.303 

0.314 

0.276 

0.439 

0.257 
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𝒏 Power Symmetric Distributions with Light, 
Normal, or Nearly Normal Tails 

Symmetric Distributions with Heavy 
Tails 

U(0,1) B(3,3) N(0,1) t(10) Lpl CN 
(.8,3) 

CN 
(.9,3) 

t(5) 

80 Simul. 

Approx. 

0.981 

0.991 

0.909 

0.923 

0.815 

0.794 

0.689 

0.624 

0.481 

0.423 

0.372 

0.340 

0.347 

0.309 

0.483 

0.288 

90 Simul. 

Approx. 

0.988 

0.996 

0.937 

0.950 

0.851 

0.840 

0.724 

0.676 

0.514 

0.467 

0.400 

0.375 

0.377 

0.342 

0.523 

0.318 

100 Simul. 

Approx. 

0.994 

0.998 

0.961 

0.967 

0.880 

0.876 

0.779 

0.722 

0.558 

0.508 

0.430 

0.410 

0.411 

0.373 

0.566 

0.347 

110 Simul. 

Approx. 

0.997 

0.999 

0.967 

0.979 

0.909 

0.905 

0.803 

0.763 

0.591 

0.547 

0.471 

0.443 

0.449 

0.404 

0.592 

0.376 

120 Simul. 

Approx. 

0.999 

1.000 

0.982 

0.987 

0.929 

0.928 

0.844 

0.799 

0.629 

0.584 

0.502 

0.476 

0.476 

0.434 

0.630 

0.405 

 

Table 4  Simulated power levels (evaluated at 𝜌 = 𝜎/𝜎0 = 1.25 ) of a two-sided test for the 

variance based on Bonett’s method compared with theoretical (normal approximation) power 

levels. The samples were generated from skew distributions with nearly normal, moderately 

heavy, or heavy tails. 

𝒏 Power Skewed Distributions with Nearly Normal or 
Moderately Heavy Tails 

Skewed Distributions with 
Heavy Tails 

Chi(10) B(8,1) Chi(5) Chi(3) Exp 

20 Simul. 

Approx. 

0.222 

0.186 

0.166 

0.152 

0.172 

0.149 

0.139 

0.123 

0.128 

0.104 

30 Simul. 

Approx. 

0.314 

0.263 

0.216 

0.263 

0.234 

0.205 

0.190 

0.164 

0.151 

0.135 

40 Simul. 

Approx. 

0.387 

0.338 

0.266 

0.266 

0.292 

0.261 

0.223 

0.204 

0.186 

0.165 

50 Simul. 

Approx. 

0.455 

0.409 

0.324 

0.323 

0.349 

0.316 

0.263 

0.245 

0.208 

0.196 

60 Simul. 

Approx. 

0.521 

0.477 

0.376 

0.377 

0.399 

0.369 

0.302 

0.286 

0.239 

0.227 
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𝒏 Power Skewed Distributions with Nearly Normal or 
Moderately Heavy Tails 

Skewed Distributions with 
Heavy Tails 

Chi(10) B(8,1) Chi(5) Chi(3) Exp 

70 Simul. 

Approx. 

0.583 

0.539 

0.419 

0.430 

0.463 

0.420 

0.361 

0.325 

0.269 

0.257 

80 Simul. 

Approx. 

0.646 

0.597 

0.473 

0.479 

0.499 

0.469 

0.394 

0.365 

0.299 

0.288 

90 Simul. 

Approx. 

0.688 

0.649 

0.517 

0.526 

0.561 

0.516 

0.428 

0.403 

0.327 

0.318 

100 Simul. 

Approx. 

0.738 

0.695 

0.561 

0.571 

0.591 

0.560 

0.469 

0.440 

0.368 

0.347 

110 Simul. 

Approx. 

0.779 

0.737 

0.608 

0.611 

0.637 

0.600 

0.495 

0.475 

0.394 

0.376 

120 Simul. 

Approx. 

0.810 

0.774 

0.635 

0.650 

0.679 

0.638 

0.538 

0.509 

0.416 

0.405 
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Figure 2  Simulated power curves compared with theoretical power curves for various 

distributions 

The results in Tables 3 and 4 and Figure 2 show that when samples are generated from 

distributions with lighter tails (L-type distributions, as defined in Appendix C), such as the 

uniform distribution, the Beta (3,3) distribution, the normal distribution, the t distribution with 10 

degrees of freedom, and the chi-square distribution with 10 degrees of freedom, the theoretical 

power values and the simulated power levels are practically undistinguishable.  

However, for distributions with heavy tails (H-type distributions), the simulated power curves are 

markedly above the theoretical power curves when the samples are small. These heavy-tailed 

distributions include the t distribution with 5 degrees of freedom, the Laplace distribution, the 

chi-square distribution with 3 degrees of freedom, the exponential distribution, and the two 

contaminated normal distributions, CN(0.9,3) and CN(0.8,3). Therefore, when planning the 

sample size for a study and the sample comes from a distribution with heavy tails, the sample 

size estimated by the theoretical power function may be larger than the actual sample size 

required to achieve a given target power.  
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Appendix E: The SJ test for normal 
versus heavy tails 
The results of the simulation study in Appendix C showed that when the tails of the distribution 

are heavier, larger sample sizes are required for the simulated coverage probability of Bonett’s 

confidence intervals to approach the target level. Skewness, however, did not appear to have a 

significant effect on the simulated coverage probabilities.  

Therefore, we needed to develop a criterion to assess the validity of Bonett’s method based 

both on the size of the sample and the heaviness of the tails of the distribution from which the 

sample is drawn. Fortunately, Gel et al. (2007) provide a reasonably powerful test for directly 

testing the null hypothesis that the distribution has normal tails against the alternative 

hypothesis that the distribution has heavy tails. The test, which we refer to as the SJ test, is 

based upon the following statistic: 

𝑅̂ =
𝑠

𝑗̂
 

where 𝑆 is the sample standard deviation, 𝑗̂ is the estimate of the sample mean absolute 

deviation from the median, 𝑚, and is given as 

𝑗̂ =
√𝜋/2

𝑛
∑|𝑋𝑖

𝑛

𝑖=1

−𝑚| 

An approximate size-𝛼 test against the alternative hypothesis of heavy tails rejects the null 

hypothesis of normal tails if 

√𝑛(𝑅̂ − 1)

𝜎𝑅
≥ 𝑧𝛼 

where 𝑧𝛼is the upper 𝛼-percentile of a standard normal distribution and 𝜎𝑅 = (𝜋 − 3)/2. 

Gel et al. (2007) have shown that replacing the upper 𝛼-percentile of the standard normal 

distribution with that of the t distribution with (√𝑛 + 3)/2 degrees of freedom provides better 

approximations for moderate sample sizes. Therefore, when applying the SJ test for the Validity 

of test data check, we replace 𝑧𝛼with 𝑡𝑑,𝛼, the upper 𝛼-percentile of the t-distribution with 𝑑 =

(√𝑛 + 3)/2 degrees of freedom.  
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Appendix F: Validity of test 

Simulation F1: Using simulated power of SJ test to 
determine distribution classifications 
We performed simulations to investigate the power of the SJ test. We generated samples of 

various sizes (𝑛 = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200) from various 

distributions. The distributions had normal, light, moderate, or heavy tails, and are the same as 

those described in simulation C1 (see Appendix C). For each given sample size, 10,000 sample 

replicates were drawn from each distribution. We calculated the simulated power of the SJ test 

as the proportion of cases for which the null hypothesis (that the parent distribution has normal 

tails) was rejected. In addition, we calculated the average 𝑅 values (AveR) and the average p-

values (AvePV). 

The simulation results are shown in Tables 5 and 6 below. 

Table 5  Simulated power levels of the SJ test. The samples were generated from symmetric 

distributions with light, normal, nearly normal, or heavy tails. 

Distribution Symmetric Distributions with Light, 
Normal, or Nearly Normal Tails 

Symmetric Distributions with  
Heavy Tails 

U(0,1) B(3,3) N(0,1) t(10) Lpl CN 
(.8,3) 

CN 
(.9,3) 

t(5) 

𝒏 TrueR 0.921 0.965 1.0 1.032 1.128 1.152 1.118 1.085 

10  Power 

AveR 

AvePV 

0.021 

1.010 

0.482 

0.041 

1.036 

0.401 

0.075 

1.060 

0.341 

0.103 

1.073 

0.314 

0.249 

1.129 

0.219 

0.264 

1.131 

0.228 

0.198 

1.106 

0.272 

0.161 

1.096 

0.278 

15 Power 

AveR 

AvePV 

0.009 

0.986 

0.572 

0.027 

1.018 

0.440 

0.071 

1.043 

0.357 

0.121 

1.063 

0.302 

0.350 

1.130 

0.171 

0.389 

1.140 

0.181 

0.283 

1.110 

0.240 

0.215 

1.093 

0.247 

20 Power 

AveR 

AvePV 

0.002 

0.966 

0.669 

0.016 

1.001 

0.503 

0.066 

1.030 

0.382 

0.144 

1.054 

0.311 

0.428 

1.127 

0.147 

0.465 

1.137 

0.161 

0.331 

1.104 

0.236 

0.253 

1.086 

0.244 

25 Power 

AveR 

AvePV 

0.002 

0.959 

0.721 

0.011 

0.995 

0.535 

0.065 

1.025 

0.391 

0.153 

1.050 

0.305 

0.500 

1.128 

0.120 

0.550 

1.141 

0.128 

0.397 

1.107 

0.208 

0.293 

1.086 

0.223 
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Distribution Symmetric Distributions with Light, 
Normal, or Nearly Normal Tails 

Symmetric Distributions with  
Heavy Tails 

U(0,1) B(3,3) N(0,1) t(10) Lpl CN 
(.8,3) 

CN 
(.9,3) 

t(5) 

𝒏 TrueR 0.921 0.965 1.0 1.032 1.128 1.152 1.118 1.085 

30 Power 

AveR 

AvePV 

0.001 

0.951 

0.773 

0.010 

0.989 

0.570 

0.060 

1.019 

0.409 

0.170 

1.046 

0.304 

0.561 

1.127 

0.103 

0.603 

1.141 

0.112 

0.431 

1.106 

0.197 

0.334 

1.084 

0.209 

40 Power 

AveR 

AvePV 

0.000 

0.944 

0.840 

0.006 

0.984 

0.616 

0.058 

1.015 

0.420 

0.190 

1.043 

0.287 

0.665 

1.126 

0.073 

0.709 

1.145 

0.076 

0.513 

1.109 

0.162 

0.401 

1.084 

0.179 

50 Power 

AveR 

AvePV 

0.000 

0.939 

0.886 

0.004 

0.980 

0.654 

0.058 

1.012 

0.427 

0.208 

1.040 

0.279 

0.746 

1.126 

0.053 

0.785 

1.146 

0.055 

0.590 

1.111 

0.131 

0.462 

1.084 

0.156 

60 Power 

AveR 

AvePV 

0.000 

0.936 

0.913 

0.002 

0.978 

0.686 

0.060 

1.010 

0.430 

0.231 

1.039 

0.267 

0.813 

1.127 

0.039 

0.836 

1.146 

0.039 

0.647 

1.112 

0.109 

0.518 

1.084 

0.134 

70 Power 

AveR 

AvePV 

0.000 

0.934 

0.935 

0.002 

0.975 

0.716 

0.054 

1.009 

0.437 

0.247 

1.037 

0.259 

0.863 

1.127 

0.028 

0.879 

1.147 

0.029 

0.702 

1.112 

0.091 

0.554 

1.083 

0.123 

80 Power 

AveR 

AvePV 

0.000 

0.933 

0.950 

0.001 

0.974 

0.740 

0.054 

1.007 

0.440 

0.265 

1.037 

0.241 

0.896 

1.128 

0.021 

0.912 

1.147 

0.021 

0.729 

1.111 

0.079 

0.591 

1.083 

0.105 

90 Power 

AveR 

AvePV 

0.000 

0.932 

0.962 

0.001 

0.973 

0.759 

0.054 

1.007 

0.445 

0.281 

1.036 

0.237 

0.933 

1.128 

0.014 

0.934 

1.148 

0.016 

0.771 

1.113 

0.067 

0.633 

1.083 

0.093 

100 Power 

AveR 

AvePV 

0.000 

0.930 

0.971 

0.001 

0.972 

0.779 

0.057 

1.006 

0.446 

0.301 

1.036 

0.224 

0.947 

1.127 

0.012 

0.954 

1.148 

0.011 

0.805 

1.113 

0.055 

0.661 

1.083 

0.083 

120 Power 

AveR 

AvePV 

0.000 

0.929 

0.982 

0.000 

0.971 

0.809 

0.052 

1.005 

0.452 

0.334 

1.035 

0.206 

0.974 

1.128 

0.006 

0.974 

1.149 

0.007 

0.852 

1.114 

0.041 

0.732 

1.083 

0.064 
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Distribution Symmetric Distributions with Light, 
Normal, or Nearly Normal Tails 

Symmetric Distributions with  
Heavy Tails 

U(0,1) B(3,3) N(0,1) t(10) Lpl CN 
(.8,3) 

CN 
(.9,3) 

t(5) 

𝒏 TrueR 0.921 0.965 1.0 1.032 1.128 1.152 1.118 1.085 

140 Power 

AveR 

AvePV 

0.000 

0.928 

0.989 

0.000 

0.971 

0.834 

0.052 

1.004 

0.454 

0.336 

1.034 

0.192 

0.986 

1.127 

0.004 

0.988 

1.150 

0.003 

0.894 

1.116 

0.027 

0.785 

1.084 

0.048 

160 Power 

AveR 

AvePV 

0.000 

0.927 

0.993 

0.000 

0.970 

0.858 

0.054 

1.004 

0.457 

0.402 

1.034 

0.177 

0.993 

1.128 

0.002 

0.992 

1.150 

0.002 

0.916 

1.114 

0.021 

0.819 

1.084 

0.040 

180 Power 

AveR 

AvePV 

0.000 

0.926 

0.995 

0.000 

0.969 

0.874 

0.052 

1.003 

0.461 

0.416 

1.034 

0.167 

0.998 

1.128 

0.001 

0.996 

1.149 

0.001 

0.934 

1.115 

0.016 

0.853 

1.084 

0.033 

200 Power 

AveR 

AvePV 

0.000 

0.926 

0.997 

0.000 

0.969 

0.890 

0.053 

1.003 

0.461 

0.448 

1.034 

0.153 

0.998 

1.127 

0.001 

0.998 

1.150 

0.001 

0.954 

1.116 

0.011 

0.884 

1.083 

0.025 

 

Table 6  Simulated power levels of the SJ test. The samples were generated from skew 

distributions with nearly normal, moderately heavy, or heavy tails. 

Distributions Skew Distributions with Nearly Normal 
or Moderately Heavy Tails 

Skew Distributions with  
Heavy Tails 

Chi(10) B(8,1) Chi(5) Chi(3) Exp 

𝒏 TrueR 1.028 1.075 1.059 1.098 1.151 

10  Power 

AveR 

AvePV 

0.120 

1.072 

0.326 

0.213 

1.105 

0.284 

0.161 

1.088 

0.304 

0.218 

1.108 

0.279 

0.283 

1.136 

0.251 

15 Power 

AveR 

AvePV 

0.139 

1.062 

0.320 

0.270 

1.105 

0.261 

0.205 

1.082 

0.286 

0.292 

1.110 

0.245 

0.377 

1.141 

0.209 

20 Power 

AveR 

AvePV 

0.152 

1.051 

0.335 

0.295 

1.089 

0.260 

0.223 

1.070 

0.296 

0.328 

1.101 

0.242 

0.449 

1.142 

0.186 
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Distributions Skew Distributions with Nearly Normal 
or Moderately Heavy Tails 

Skew Distributions with  
Heavy Tails 

Chi(10) B(8,1) Chi(5) Chi(3) Exp 

𝒏 TrueR 1.028 1.075 1.059 1.098 1.151 

25 Power 

AveR 

AvePV 

0.160 

1.043 

0.337 

0.336 

1.084 

0.236 

0.255 

1.068 

0.281 

0.374 

1.101 

0.219 

0.515 

1.144 

0.156 

30 Power 

AveR 

AvePV 

0.171 

1.043 

0.329 

0.370 

1.084 

0.228 

0.285 

1.065 

0.274 

0.414 

1.097 

0.206 

0.564 

1.142 

0.139 

40 Power 

AveR 

AvePV 

0.193 

1.039 

0.321 

0.440 

1.085 

0.188 

0.331 

1.064 

0.246 

0.490 

1.098 

0.171 

0.651 

1.143 

0.106 

50 Power 

AveR 

AvePV 

0.215 

1.037 

0.314 

0.484 

1.081 

0.173 

0.370 

1.064 

0.220 

0.556 

1.100 

0.140 

0.720 

1.143 

0.080 

60 Power 

AveR 

AvePV 

0.224 

1.035 

0.303 

0.527 

1.079 

0.152 

0.395 

1.062 

0.208 

0.607 

1.099 

0.119 

0.778 

1.146 

0.062 

70 Power 

AveR 

AvePV 

0.241 

1.034 

0.292 

0.568 

1.079 

0.134 

0.438 

1.061 

0.191 

0.648 

1.098 

0.104 

0.822 

1.146 

0.048 

80 Power 

AveR 

AvePV 

0.259 

1.034 

0.280 

0.612 

1.079 

0.115 

0.474 

1.062 

0.170 

0.689 

1.098 

0.089 

0.855 

1.148 

0.036 

90 Power 

AveR 

AvePV 

0.284 

1.034 

0.270 

0.643 

1.079 

0.104 

0.501 

1.060 

0.163 

0.733 

1.099 

0.075 

0.890 

1.148 

0.028 

100 Power 

AveR 

AvePV 

0.285 

1.032 

0.267 

0.675 

1.078 

0.094 

0.527 

1.060 

0.151 

0.757 

1.098 

0.067 

0.912 

1.147 

0.022 
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Distributions Skew Distributions with Nearly Normal 
or Moderately Heavy Tails 

Skew Distributions with  
Heavy Tails 

Chi(10) B(8,1) Chi(5) Chi(3) Exp 

𝒏 TrueR 1.028 1.075 1.059 1.098 1.151 

120 Power 

AveR 

AvePV 

0.323 

1.032 

0.246 

0.728 

1.077 

0.074 

0.572 

1.060 

0.129 

0.816 

1.098 

0.050 

0.942 

1.149 

0.014 

140 Power 

AveR 

AvePV 

0.344 

1.031 

0.232 

0.769 

1.077 

0.060 

0.621 

1.060 

0.112 

0.852 

1.099 

0.036 

0.963 

1.148 

0.009 

160 Power 

AveR 

AvePV 

0.363 

1.031 

0.217 

0.815 

1.077 

0.047 

0.666 

1.060 

0.093 

0.887 

1.098 

0.027 

0.978 

1.150 

0.005 

180 Power 

AveR 

AvePV 

0.385 

1.031 

0.209 

0.843 

1.077 

0.039 

0.692 

1.059 

0.083 

0.910 

1.099 

0.021 

0.986 

1.148 

0.004 

200 Power 

AveR 

AvePV 

0.410 

1.030 

0.196 

0.877 

1.077 

0.030 

0.727 

1.059 

0.071 

0.931 

1.098 

0.016 

0.989 

1.149 

0.003 

 

Our simulation results in Tables 5 and 6 are consistent with those published in Gel et al. (2007). 

When the samples are from the normal populations, the simulated power levels (which in this 

case represent the actual significance level of the test) are not far from the target level, even for 

sample sizes as low as 25. When the samples are from heavy-tailed distributions, the power of 

the test is low for small sample sizes but increases to at least 40% when the sample size reaches 

40. Specifically, the power at sample size 40 is about 40.1% for the t-distribution with 5 degrees 

of freedom, 66.5% for the Laplace distribution, and 65.1% for the exponential distribution.  

For light-tailed distributions (the Beta(3,3) and the uniform distributions), the power of the test is 

near 0 for small samples and decreases even further as the sample size increases. This is not 

surprising because the evidence for these distributions actually supports the alternative 

hypothesis of a lighter tailed distribution, rather than the alternative hypothesis of a heavier-

tailed distribution.  

When the samples are from distributions with slightly heavier tails, such as the t-distribution 

with 10 degrees of freedom or the chi-square distribution with 10 degrees of freedom, the 

power levels are low for moderate to large sample sizes. For our purposes, this is actually a good 

result because the test for one variance (standard deviation) performs well for these 
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distributions and we do not want these distributions to be flagged as heavy-tailed. However, as 

the sample size increases, the power of the test increases, so these slightly heavy-tailed 

distributions are detected as heavy-tailed distributions.  

Therefore, the rules for evaluating the tail weight of the distribution for this test must also take 

into consideration the size of the sample. One approach for doing this is to calculate a 

confidence interval for the measure of the tail weight; however, the distribution of the SJ statistic 

is extremely sensitive to the parent distribution of the sample. An alternative approach is to 

assess the heaviness of the tails of the distribution based on both the strength of the rejection 

of the null hypothesis of the SJ test and the sample size. More specifically, smaller p-values 

indicate heavier tails and larger p-values indicate lighter tails. However, larger samples tend to 

have smaller p-values than smaller samples. Therefore, based on the simulated power levels, 

sample sizes, and average p-values in Table 3, we devise a general set of rules for evaluating the 

tails of a distribution for each sample using the SJ test.  

For moderate to large sample sizes (40 ≤ 𝑛 ≤ 100), if the p-value is between 0.01 and 0.05, we 

deem that there is mild evidence against the null hypothesis. That is, the distribution of the 

sample is classified as a moderately heavy-tailed (M-type) distribution. On the other hand, if the 

p-value is below 0.01, then there is strong evidence against the null hypothesis, and the parent 

distribution of the sample is classified as a distribution with heavy tails (H-type).  

For large samples (𝑛 > 100), we categorize the parent distribution as an M-type distribution if 

the p-value falls between 0.005 and 0.01, and as an H-type distribution if the p-value is 

extremely small (below 0.005). Note that when the sample size is below 40, the power of the SJ 

test is generally too low for the distribution of the sample to be effectively determined.  

The general classification rules for the validity of the 1-variance test using Bonett’s method are 

summarized in Table 7 below.  

Table 7  Classification rules for identifying the parent distribution of each sample (𝑝 is the p-

value of the SJ test) 

Condition Distribution type 

𝒏 < 40 None is determined 

𝟏𝟎𝟎 ≥ 𝒏 ≥ 𝟒𝟎 and 𝒑 > 0.05  L-type distribution 

𝒏 > 100 and 𝒑 > 0.01 L-type distribution 

𝟒𝟎 ≤ 𝒏 ≤ 𝟏𝟎𝟎 and 𝟎. 𝟎𝟏 < 𝒑 ≤ 𝟎. 𝟎𝟓  M-type distribution 

𝒏 > 100 and 𝟎. 𝟎𝟎𝟓 < 𝒑 ≤ 𝟎. 𝟎𝟏 M-type distribution 

𝟒𝟎 ≤ 𝒏 ≤ 𝟏𝟎𝟎 and 𝒑 ≤ 𝟎. 𝟎𝟏  H-type distribution 

𝒏 > 100 and 𝒑 ≤ 𝟎. 𝟎𝟎𝟓 H-type distribution 
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As indicated earlier, based on the results of Tables 1 and 2 in simulation C1, the approximate 

minimum sample size required to achieve a minimum of 0.93 coverage probability when 

samples are generated from an L-type, an M-type, and an H-type distribution is 20, 80, and 200, 

respectively. However, because the power of the SJ test is low for small samples, the minimum 

sample size requirement for L-type distributions is set at 40. 

Simulation F2: Verifying the rules for classifying 
distributions 
We generated samples from some of the distributions described in simulation C1 and used the 

SJ test to determine the proportions of the samples that were classified in one of the three 

distribution groups: L-type, M-type, and H-type. The simulation results are shown in Table 8.  

Table 8  Fraction of 10,000 samples of different sizes from various distributions that are 

identified as L-type, M-type, and H-type  

𝒏 Distributions L-type M-type H-type 

B(3,3) N(0,1)  t(10)  Chi(10)  Chi(5)  Lpl  Exp 

40 %L-type 

%M-type 

%H-type 

99.6 

0.4 

0.0 

94.0 

5.5 

0.5 

81.5 

14.0 

4.5 

80.3 

14.0 

5.7 

66.6 

20.0 

13.4 

33.0 

31.9 

35.1 

34.4 

22.9 

42.8 

50 %L-type 

%M-type 

%H-type 

99.7 

0.3 

0.0 

94.4 

5.1 

0.5 

78.7 

15.6 

5.7 

79.1 

14.2 

6.7 

64.0 

20.0 

16.0 

25.1 

29.9 

45.0 

28.0 

20.7 

51.3 

60 %L-type 

%M-type 

%H-type 

99.7 

0.3 

0.0 

94.5 

5.1 

0.5 

77.3 

16.4 

6.3 

77.3 

15.0 

7.7 

59.1 

22.0 

18.9 

18.5 

27.4 

54.1 

22.6 

19.2 

58.2 

70 %L-type 

%M-type 

%H-type 

99.8 

0.2 

0.0 

94.4 

5.0 

0.6 

74.5 

18.1 

7.4 

75.2 

16.0 

8.8 

55.9 

22.2 

21.9 

14.0 

24.0 

62.0 

18.1 

17.5 

64.4 

80 %L-type 

%M-type 

%H-type 

99.9 

0.1 

0.0 

94.3 

5.1 

0.6 

74.1 

17.8 

8.2 

74.4 

16.7 

8.9 

53.0 

22.8 

24.2 

10.0 

21.0 

69.0 

13.9 

15.5 

70.6 

90 %L-type 

%M-type 

%H-type 

99.9 

0.1 

0.0 

94.4 

5.0 

0.6 

71.2 

19.1 

9.7 

72.1 

17.2 

10.7 

49.5 

22.6 

27.9 

7.5 

16.5 

76.0 

11.1 

13.7 

75.3 
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𝒏 Distributions L-type M-type H-type 

B(3,3) N(0,1)  t(10)  Chi(10)  Chi(5)  Lpl  Exp 

100 %L-type 

%M-type 

%H-type 

99.9 

0.1 

0.0 

94.5 

4.9 

0.6 

70.8 

19.5 

9.7 

70.3 

17.9 

11.8 

47.3 

22.7 

30.0 

4.8 

14.3 

80.9 

8.9 

11.8 

79.4 

120 %L-type 

%M-type 

%H-type 

100.0 

0.0 

0.0 

99.4 

0.4 

0.2 

87.4 

5.0 

7.6 

87.2 

4.5 

8.4 

64.8 

7.9 

27.4 

12.0 

7.8 

80.4 

14.4 

5.6 

80.0 

140 %L-type 

%M-type 

%H-type 

100.0 

0.0 

0.0 

99.3 

0.5 

0.2 

86.0 

5.2 

8.8 

85.1 

5.0 

9.9 

60.5 

8.6 

30.9 

7.0 

5.6 

87.4 

9.9 

4.1 

86.0 

160 %L-type 

%M-type 

%H-type 

100.0 

0.0 

0.0 

99.4 

0.5 

0.1 

83.4 

6.3 

10.4 

83.0 

5.8 

11.2 

55.6 

9.5 

34.9 

4.0 

3.5 

92.5 

6.9 

3.0 

90.1 

180 %L-type 

%M-type 

%H-type 

100.0 

0.0 

0.0 

99.3 

0.5 

0.2 

81.1 

6.8 

12.1 

81.7 

5.9 

12.4 

51.0 

9.4 

39.6 

2.5 

1.9 

95.6 

4.6 

2.2 

93.2 

200 %L-type 

%M-type 

%H-type 

100.0 

0.0 

0.0 

99.5 

0.4 

0.1 

79.0 

7.6 

13.4 

80.5 

6.1 

13.4 

47.2 

9.4 

43.4 

1.3 

1.6 

97.1 

3.0 

1.7 

95.3 

 

The results in Table 8 show that when samples are from light-tailed (L-type) and heavy-tailed  

(H-type) distributions, a higher proportion of the samples are correctly classified. For example, 

when samples of size 40 were generated from the Beta(3,3) distribution, 99.6% of the samples 

were correctly classified as having lighter tails; when samples of size 90 were generated from the 

Laplace distribution, 76.0% were correctly classified as having heavy tails. As a result, warning 

messages in the Report Card regarding the validity of the test are not wrongly issued when 

samples are truly from lighter tailed distributions, and are correctly issued when the sample 

comes from a distribution with heavy tails and the minimum sample size requirement is not met. 

In addition, for samples from distributions with moderately heavy tails (M-type), such as the chi-

square (5) distribution, a higher proportion of samples are misclassified as being light-tailed (L-

type) when the samples are small (for a sample size of 40, 66% of the samples are misclassified 

as light-tailed distribution). Consequently, for these cases, warning messages in the Report Card 

may not be issued even though the parent distributions have moderately heavy tails. However, 

when the sample size is greater than 80, the misclassification as an L-type distribution has no 

effect because the minimum sample size requirement has already been met. 
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