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This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

Multiple Regression 

Overview 
The multiple regression procedure in the Assistant fits linear and quadratic models with up to 

five predictors (X) and one continuous response (Y) using least squares estimation. The user 

selects the model type and the Assistant selects model terms. In this paper, we explain the 

criteria the Assistant uses to select the regression model. 

Additionally, we examine several factors that are important to obtain a valid regression model. 

First, the sample must be large enough to provide enough power for the test and to provide 

enough precision for the estimate of the strength of the relationship between X and Y. Next, it is 

important to identify unusual data that may affect the results of the analysis. We also consider 

the assumption that the error term follows a normal distribution and evaluate the impact of 

nonnormality on the hypothesis tests of the overall model. 

Based on these factors, the Assistant automatically performs the following checks on your data 

and reports the findings in the Report Card:  

 Amount of data 

 Unusual data 

 Normality 

In this paper, we investigate how these factors relate to regression analysis in practice and we 

describe how we established the guidelines to check for these factors in the Assistant. 
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Regression methods 

Model selection 
Regression analysis in the Assistant fits a model with one continuous response and two to five 

predictors. One of the predictors may be categorical. There are two types of models to choose 

from:   

 Linear: 𝐹(𝑥) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 

 Quadratic: 𝐹(𝑥) =  𝛽0 + ∑ 𝛽𝑖𝑋𝑖𝑖 + ∑ 𝛽𝑖𝑖𝑋𝑖
2

𝑖 + ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗𝑖<𝑗  

The Assistant selects the model terms from the full linear or quadratic model. 

Objective 

We wanted to examine different methods that can be used for model selection to determine 

which one to use in the Assistant. 

Method 

We examined three different types of model selection: backward, forward, and stepwise. These 

model selection types include several options that we also examined, including: 

 The criteria used to enter or remove terms from the model.  

 Whether to force certain terms into the model or to include certain terms in the initial 

model. 

 The hierarchy of the models.  

 Standardizing the X variables in the model.  

We reviewed these options, looked at their effect on the outcome of the procedure, and 

considered which methods were preferred by practitioners. 

Results 

The procedure we used to select the model terms in the Assistant is as follows: 

 Stepwise model selection is used. Often a set of potential X variables are correlated, so 

that the effect of one term will depend on what other terms are also in the model. 

Stepwise selection is arguably the best approach under this condition because it allows 

terms to be entered at one step but to be removed later, depending on what other terms 

are included in the model. 

 Hierarchy of the model is maintained at each step and multiple terms can enter the 

model in the same step. For example, if the most significant term is 𝑋1
2, then it is entered, 

along with 𝑋1, regardless of whether 𝑋1 is significant. Hierarchy is desirable because it 
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allows the model to be translated from standardized to unstandardized units. And, 

because hierarchy allows multiple terms to enter the model at any step, it is possible to 

identify an important square or interaction term, even if the associated linear term is not 

strongly related to the response. 

 Terms are entered or removed from the model based on 𝛼 = 0.10. Using 𝛼 = 0.10 makes 

the procedure more selective than the stepwise procedure in core Minitab, which uses 

𝛼 = 0.15. 

 For purposes of selecting the model terms, predictors are standardized by subtracting 

the mean and dividing by the standard deviation. The final model is displayed in units of 

the unstandardized X’s. Standardization of X’s removes most of the correlation between 

linear and square terms, which reduces the chance of adding higher order terms 

unnecessarily. 
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Data checks 

Amount of data 
Power is concerned with how likely a hypothesis test is to reject the null hypothesis, when it is 

false. For regression, the null hypothesis states that there is no relationship between X and Y. If 

the data set is too small, the power of the test may not be adequate to detect a relationship 

between X and Y that actually exists. Therefore, the data set should be large enough to detect a 

practically important relationship with high probability.  

Objective 

We wanted to determine how the amount of data affects the power of the overall F-test of the 

relationship between X and Y and the precision of 𝑅𝑎𝑑𝑗
2 , the estimate of the strength of the 

relationship between X and Y. This information is critical to determine whether the data set is 

large enough to trust that the strength of the relationship observed in the data is a reliable 

indicator of the true underlying strength of the relationship. For more information on 𝑅𝑎𝑑𝑗
2 , see 

Appendix A.  

Method 

We took a similar approach to determining the recommended sample size that we used for 

simple regression. We examined the variability in 𝑅𝑎𝑑𝑗
2  values to determine how large the sample 

should be so that 𝑅𝑎𝑑𝑗
2  is close to 𝜌𝑎𝑑𝑗

2 . We also confirmed that the recommended sample size 

provided reasonable power even when the strength of the relationship between Y and the X 

variables is moderately weak. For more information on the calculations, see Appendix B. 

Results 

As with simple regression, we recommend a sample large enough that you can be 90% 

confident that the observed value of 𝑅𝑎𝑑𝑗
2  will be within 0.20 of 𝜌𝑎𝑑𝑗 

2 . We found that the required 

sample size increases as you add more terms to the model. Therefore, we calculated the sample 

size needed for each model size. The recommended size is rounded up to the nearest multiple 

of 5. For example, if the model has eight coefficients in addition to the constant, such as four 

linear terms, three interaction terms, and one square term, then the minimum sample size 

required to meet the criterion is n = 49. The Assistant rounds this up to a recommended sample 

size of n = 50. For more information on specific sample size recommendations based on the 

number of terms, see Appendix B. 

We also verified that the recommended sample sizes provide good enough power. We found 

that, for moderately weak relationships, 𝜌𝑎𝑑𝑗
2 = 0.25, the power is typically about 80% or more. 

Therefore, following the Assistant’s recommendations for sample size ensures that you will have 

reasonably good power and good precision in estimating the strength of the relationship.  
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Based on these results, the Assistant displays the following information in the Report Card when 

checking the amount of data: 

Status Condition 

 

Sample size < recommended 

The sample size is not large enough to provide a very precise estimate of the strength of the 
relationship. Measures of the strength of the relationship, such as R-Squared and R-Squared 
(adjusted), can vary a great deal. To obtain a precise estimate, larger samples should be used for a 
model of this size. 

 

Sample size >= recommended 

The sample is large enough to obtain a precise estimate of the strength of the relationship.  

 

Unusual data 
In the Assistant Regression procedure, we define unusual data as observations with large 

standardized residuals or large leverage values. These measures are typically used to identify 

unusual data in regression analysis (Neter et al., 1996). Because unusual data can have a strong 

influence on the results, you may need to correct the data to make the analysis valid. However, 

unusual data can also result from the natural variation in the process. Therefore, it is important 

to identify the cause of the unusual behavior to determine how to handle such data points. 

Objective 

We wanted to determine how large the standardized residuals and leverage values need to be 

to signal that a data point is unusual. 

Method 

We developed our guidelines for identifying unusual observations based on the standard 

Regression procedure in Minitab (Stat > Regression > Regression). 

Results 

STANDARDIZED RESIDUAL 

The standardized residual equals the value of a residual, 𝑒𝑖, divided by an estimate of its 

standard deviation. In general, an observation is considered unusual if the absolute value of the 

standardized residual is greater than 2. However, this guideline is somewhat conservative. You 

would expect approximately 5% of all observations to meet this criterion by chance (if the errors 

are normally distributed). Therefore, it is important to investigate the cause of the unusual 

behavior to determine if an observation truly is unusual. 



 

MULTIPLE REGRESSION 6 

LEVERAGE VALUE 

Leverage values are related only to the X value of an observation and do not depend on the Y 

value. An observation is determined to be unusual if the leverage value is more than 3 times the 

number of model coefficients (p) divided by the number of observations (n). Again, this is a 

commonly used cut-off value, although some textbooks use 
2 × 𝑝

𝑛
 (Neter et al., 1996).  

If your data include any high leverage points, consider whether they have undue influence over 

the model selected to fit the data. For example, a single extreme X value could result in the 

selection of a quadratic model instead of a linear model. You should consider whether the 

observed curvature in the quadratic model is consistent with your understanding of the process. 

If it is not, fit a simpler model to the data or gather additional data to more thoroughly 

investigate the process. 

When checking for unusual data, the Assistant Report Card displays the following status 

indicators: 

Status Condition 

 

There are no unusual data points. 

 

There are at least one or more large standardized residuals or at least one or more high leverage 
points. 

 

Normality 
A typical assumption in regression is that the random errors (𝜀) are normally distributed. The 

normality assumption is important when conducting hypothesis tests of the estimates of the 

coefficients (𝛽). Fortunately, even when the random errors are not normally distributed, the test 

results are usually reliable when the sample is large enough. 

Objective 

We wanted to determine how large the sample needs to be to provide reliable results based on 

the normal distribution. We wanted to determine how closely the actual test results matched the 

target level of significance (alpha, or Type I error rate) for the test; that is, whether the test 

incorrectly rejected the null hypothesis more often or less often than expected for different 

nonnormal distributions. 

Method 

To estimate the Type I error rate, we performed multiple simulations with skewed, heavy-tailed, 

and light-tailed distributions that depart substantially from the normal distribution. We 

conducted simulations using a sample size of 15. We examined the overall F-test for several 

models. 
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For each condition, we performed 10,000 tests. We generated random data so that for each test, 

the null hypothesis is true. Then, we performed the tests using a target significance level of 0.10. 

We counted the number of times out of 10,000 that the tests actually rejected the null 

hypothesis, and compared this proportion to the target significance level. If the test performs 

well, the Type I error rates should be very close to the target significance level. See Appendix C 

for more information on the simulations. 

Results 

For both the overall F-test, the probability of finding statistically significant results does not 

differ substantially for any of the nonnormal distributions. The Type I error rates are all between 

0.08820 and 0.11850, reasonably close to the target significance level of 0.10.  

Because the tests perform well with relatively small samples, the Assistant does not test the data 

for normality. Instead, the Assistant checks the size of the sample and indicates when the sample 

is less than 15. The Assistant displays the following status indicators in the Report Card for 

Regression: 

Status Condition 

 

The sample size is at least 15, so normality is not an issue. 

 

Because the sample size is less than 15, normality may be an issue. You should use caution when 
interpreting the p-value. With small samples, the accuracy of the p-value is sensitive to nonnormal 
residual errors. 

 



 

MULTIPLE REGRESSION 8 

References 
Neter, J., Kutner, M.H., Nachtsheim, C.J., & Wasserman, W. (1996). Applied linear statistical 

models. Chicago: Irwin.  



 

MULTIPLE REGRESSION 9 

Appendix A: Model and statistics 
A regression model relating a predictor X to a response Y is of the form: 

𝑌 = 𝑓(𝑋) + 𝜀 

where the function f(X) represents the expected value (mean) of Y given X.  

In the Assistant, there are two choices for the form of the function f(X): 

Model type f(X) 

Linear 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 

Quadratic 
𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑖

+ ∑ 𝛽𝑖𝑖𝑋𝑖
2

𝑖

+ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑖<𝑗

 

 

The values of the coefficients 𝛽 are unknown and must be estimated from the data. The method 

of estimation is least squares, which minimizes the sum of squared residuals in the sample: 

min ∑ (𝑌𝑖 −  𝑓(𝑋𝑖))
2

.

𝑛

𝑖=1

 

A residual is the difference between the observed response 𝑌𝑖 and the fitted value 𝑓(𝑋𝑖) based 

on the estimated coefficients. The minimized value of this sum of squares is the SSE (error sum 

of squares) for a given model. 

Overall F-test 
This method is a test of the overall model (linear or quadratic). For the selected form of the 

regression function f(X), it tests: 

𝐻0: 𝑓(𝑋)𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐻1: 𝑓(𝑋)𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

Adjusted 𝑹𝟐 
Adjusted 𝑅2 (𝑅𝑎𝑑𝑗

2 ) measures how much of the variability in the response is attributed to X by 

the model. There are two common ways of measuring the strength of the observed relationship 

between X and Y: 

𝑅2 = 1 − 
𝑆𝑆𝐸

𝑆𝑆𝑇𝑂
 

And 

𝑅𝑎𝑑𝑗
2 = 1 −  

𝑆𝑆𝐸/(𝑛−𝑝)

𝑆𝑆𝑇𝑂/(𝑛−1)
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Where 

SSTO = ∑ (𝑌𝑖 −  �̅�)2𝑛
𝑖=1  

SSTO is the total sum of squares, which measures the variation of the responses about their 

overall average �̅�  SSE measures their variation about the regression function f(X). The 

adjustment in 𝑅𝑎𝑑𝑗
2  is for the number of coefficients (p) in the full model, which leaves n – p 

degrees of freedom to estimate the variance of 𝜀. 𝑅2 never decreases when more coefficients 

are added to the model. However, because of the adjustment, 𝑅𝑎𝑑𝑗
2  can decrease when 

additional coefficients do not improve the model. Thus, if adding another term to the model 

does not explain any additional variance in the response, 𝑅𝑎𝑑𝑗
2  decreases, indicating that the 

additional term is not useful. Therefore, the adjusted measure should be used to compare 

models of different sizes. 

Relationship between the F-test and 𝑹𝒂𝒅𝒋
𝟐  

The F- statistic for the test of the overall model can be expressed in terms of SSE and SSTO 

which are also used in the calculation of 𝑅𝑎𝑑𝑗
2 : 

F = 
(𝑆𝑆𝑇𝑂 – 𝑆𝑆𝐸)/(𝑝−1)

𝑆𝑆𝐸/(𝑛−𝑝)
 

= 1 +  (
𝑛−1

𝑝−1
)

𝑅𝑎𝑑𝑗
2

1−𝑅𝑎𝑑𝑗
2 . The formulas above show that the F-statistic is an increasing function of 

𝑅𝑎𝑑𝑗
2 . Thus, the test rejects H0 if and only if 𝑅𝑎𝑑𝑗

2  exceeds a specific value determined by the 

significance level (𝛼) of the test. 
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Appendix B: Amount of data 
In this section we consider how n, the number of observations, affects the power of the overall 

model test and the precision of 𝑅𝑎𝑑𝑗
2 , the estimate of the strength of the model.  

To quantify the strength of the relationship, we introduce a new quantity, 𝜌𝑎𝑑𝑗
2  , as the 

population counterpart of the sample statistic 𝑅𝑎𝑑𝑗
2 . Recall that 

𝑅𝑎𝑑𝑗
2 = 1 −  

𝑆𝑆𝐸/(𝑛 − 𝑝)

𝑆𝑆𝑇𝑂/(𝑛 − 1)
 

Therefore, we define 

𝜌𝑎𝑑𝑗
2 = 1 − 

𝐸(𝑆𝑆𝐸|𝑋)/(𝑛 − 𝑝)

𝐸(𝑆𝑆𝑇𝑂|𝑋)/(𝑛 − 1)
 

The operator E(∙|X) denotes the expected value, or the mean of a random variable given the 

value of X. Assuming the correct model is 𝑌 = 𝑓(𝑋) + 𝜀 with independent identically distributed 

ε, we have 

𝐸(𝑆𝑆𝐸|𝑋)

𝑛 − 𝑝
= 𝜎2 = 𝑉𝑎𝑟(𝜀) 

𝐸(𝑆𝑆𝑇𝑂|𝑋)

𝑛 − 1
= ∑

(𝑓(𝑋𝑖) − 𝑓̅)2

(𝑛 − 1)
+ 𝜎2

𝑛

𝑖=1

 

where 𝑓̅ =  
1

𝑛
∑ 𝑓(𝑋𝑖)𝑛

𝑖=1 . 

Hence, 

𝜌𝑎𝑑𝑗
2 =

∑ (𝑓(𝑋𝑖) − 𝑓̅)
2

(𝑛 − 1)⁄𝑛
𝑖=1

∑ (𝑓(𝑋𝑖) − 𝑓̅)
2

(𝑛 − 1)⁄ + 𝜎2𝑛
𝑖=1

 

Overall model significance 
When testing the statistical significance of the overall model, we assume that the random errors 

ε are independent and normally distributed. Then, under the null hypothesis that the mean of Y 

is constant (𝑓(𝑋) = 𝛽0), the F-test statistic has an 𝐹(𝑝 − 1, 𝑛 − 𝑝) distribution. Under the 

alternative hypothesis, the F-statistic has a noncentral 𝐹(𝑝 − 1, 𝑛 − 𝑝, 𝜃) distribution with 

noncentrality parameter: 

𝜃 = ∑ (𝑓(𝑋𝑖) − 𝑓̅)
2

𝜎2⁄

𝑛

𝑖=1

 

=
(𝑛 − 1)𝜌𝑎𝑑𝑗

2

1 − 𝜌𝑎𝑑𝑗
2  
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The probability of rejecting H0 increases with the noncentrality parameter, which is increasing in 

both n and 𝜌𝑎𝑑𝑗
2 . 

Strength of the relationship 
As we showed for simple regression, a statistically significant relationship in the data does not 

necessarily indicate a strong underlying relationship between X and Y. This is why many users 

look to indicators such as 𝑅𝑎𝑑𝑗
2  to tell them how strong the relationship actually is. If we consider 

𝑅𝑎𝑑𝑗
2  as an estimate of 𝜌𝑎𝑑𝑗

2 , then we want to have confidence that the estimate is reasonably 

close to the true 𝜌𝑎𝑑𝑗
2

 value.  

For each possible model size, we determined an appropriate threshold for acceptable sample 

size by identifying the minimum value of n for which absolute differences |𝑅𝑎𝑑𝑗
2  – 𝜌𝑎𝑑𝑗

2 | greater 

than 0.20 occur with no more than 10% probability. This is regardless of the true value of 𝜌𝑎𝑑𝑗
2 . 

The recommended sample sizes n(T) are summarized in the table below where T is the number 

of coefficients in the model other than the constant coefficient. 

T n(T) 

1-3 40 

4-6 45 

7-8 50 

9-11 55 

12-14 60 

15-18 65 

19-21 70 

22-24 75 

25-27 80 

28-31 85 

32-34 90 

35-38 95 

39-41 100 

42-45 105 

46-48 110 
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T n(T) 

49-52 115 

53-56 120 

57-59 125 

60-63 130 

64-67 135 

68-70 140 

71-73 145 

 

We evaluated the power of the overall F test of the model for a moderately weak value of 𝜌𝑎𝑑𝑗
2 =

0.25, to confirm that there is sufficient power at the recommended sample sizes. The model 

sizes in the table below represent the worst-case for each value of n(T). Smaller models with the 

same n(T) will have greater power. 

T n(T) Power at 

𝝆𝒂𝒅𝒋
𝟐 = 𝟎. 𝟐𝟓 

3 40 0.902791 

6 45 0.854611 

8 50 0.850675 

11 55 0.831818 

14 60 0.820592 

18 65 0.798003 

21 70 0.796425 

24 75 0.796911 

27 80 0.798856 

31 85 0.789861 

34 90 0.794367 

38 95 0.788625 

41 100 0.794511 

45 105 0.790864 
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T n(T) Power at 

𝝆𝒂𝒅𝒋
𝟐 = 𝟎. 𝟐𝟓 

48 110 0.797487 

52 115 0.795250 

56 120 0.793698 

59 125 0.800982 

63 130 0.800230 

67 135 0.799906 

69 140 0.814664 
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Appendix C: Normality 
The regression models used in the Assistant are all of the form: 

𝑌 = 𝑓(𝑋) + 𝜀 

The typical assumption about the random terms 𝜀 is that they are independent and identically 

distributed normal random variables with mean zero and common variance 𝜎2. The least 

squares estimates of the 𝛽 parameters are still the best linear unbiased estimates, even if we 

forgo the assumption that the 𝜀 are normally distributed. The normality assumption only 

becomes important when we try to attach probabilities to these estimates, as we do in the 

hypothesis tests about f(X). 

We wanted to determine how large n needs to be so that we can trust the results of a regression 

analysis based on the normality assumption. We performed simulations to explore the Type I 

error rates of the hypothesis tests under a variety of nonnormal error distributions. 

Table 1 below shows the proportion of 10,000 simulations in which the overall F-test was 

significant at 𝛼 = 0.10 for various distributions of ε for three different models. In these 

simulations, the null hypothesis, which states that there is no relationship between X and Y, was 

true. The X values were generated as multivariate normal variables by Minitab’s RANDOM 

command. We used a sample size of n=15 for all tests. All the models involved five continuous 

predictors. The first model was the linear model with all five X variables. The second model had 

all linear and square terms. The third model had all linear terms and seven of the 2-way 

interactions. 

Table 1 Type I error rates for overall F-tests with n=15 for nonnormal distributions 

Distribution Linear Linear + 

square 

Linear + 

7 interactions 

Normal 0.09910 0.10270 0.10060 

t(3) 0.09840 0.11850 0.11800 

t(5) 0.09980 0.10010 0.10430 

Laplace 0.09260 0.09400 0.09650 

Uniform 0.10630 0.10080 0.09480 

Beta(3, 3) 0.09980 0.10120 0.10020 

Exponential 0.08820 0.09500 0.09960 

Chi(3) 0.09890 0.11400 0.10970 

Chi(5) 0.09730 0.10590 0.10330 
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Distribution Linear Linear + 

square 

Linear + 

7 interactions 

Chi(10) 0.10150 0.09930 0.10360 

Beta(8, 1) 0.09870 0.10230 0.10490 

 

The simulation results show, that the probability of finding statistically significant results does 

not differ substantially from the nominal value of 0.10 for any of the error distributions. The 

Type I error rates observed are all between 0.08820 and 0.11850. 
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