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This paper explains the research conducted by Minitab statisticians to develop the methods and 

data checks used in the Assistant in Minitab Statistical Software. 

Binomial Capability and 
Poisson Capability 

Overview 
Capability analysis is used to evaluate whether a process is capable of producing output that 

meets customer requirements. When it is not possible to represent the quality of a product or 

service with continuous data, attribute data is often collected to assess its quality. The Minitab 

Assistant includes two analyses to examine the capability of a process with attribute data: 

 Binomial Capability: This analysis is used when a product or service is characterized as 

defective or not defective. Binomial capability evaluates the chance (p) that a selected 

item from a process is defective. The data collected are the number of defective items in 

individual subgroups, which is assumed to follow a binomial distribution with parameter 

p. 

 Poisson Capability: This analysis is used when a product or service can have multiple 

defects and the number of defects on each item is counted. Poisson capability evaluates 

the number of defects per unit. The data collected are the total number of defects in k 

units contained in individual subgroups, which is assumed to follow a Poisson 

distribution with an unknown mean number of defects per unit (u). 

To adequately estimate the capability of the current process and to reliably predict the capability 

of the process in the future, the data for these analyses should come from a stable process 

(Bothe, 1991; Kotz and Johnson, 2002). In addition, there should be enough subgroups collected 

over time to ensure that the capability estimates represent the process capability over a long 

period of time. Even if a process is in control, it may experience input and environmental 

changes over time. Therefore, using an adequate number of subgroups can better enable you to 

capture the different sources of variation over time (Bothe, 1997; AIAG, 1995). Finally, there 

should be enough data to ensure that the capability statistics have good precision, as indicated 

by the width of the confidence interval for the key capability measure reported by both analyses. 
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Based on these requirements, the Assistant Report Card automatically performs the following 

checks on your data: 

 Stability of process 

o Tests for special causes 

o Subgroup size  

 Number of subgroups 

 Expected variation 

 Amount of data 

In this paper, we investigate how these requirements relate to capability analysis in practice and 

we describe how we established the guidelines to check for these requirements in the Assistant.  

We also explain the Laney P’ and U’ charts that are recommended when the observed variation 

in the data doesn’t match the expected variation and Minitab detects overdispersion or 

underdispersion. 

Note  Binomial and Poisson capability analyses include the P and U attribute control charts, 

respectively, to check process stability. These two charts depend on additional assumptions that 

either cannot be checked or are difficult to check. See Appendix A for details. 



 

BINOMIAL CAPABILITY AND POISSON CAPABILITY 3 

Data checks 

Stability (Part I)  Test for special causes 
To estimate process capability accurately, your data should come from a stable process. You 

should verify the stability of your process before you evaluate its capability. If the process is not 

stable, you should identify and eliminate the causes of the instability.  

The P chart and the U chart are the most widely used attribute control charts to evaluate the 

stability of a process. The P chart plots the proportion of defective items per subgroup and is 

used with data that follow a binomial distribution. The U chart plots the number of defects per 

unit and is used with data that follow a Poisson distribution. Four tests can be performed on 

these charts to evaluate the stability of the process. Using these tests simultaneously increases 

the sensitivity of the control chart. However, it is important to determine the purpose and added 

value of each test because the false alarm rate increases as more tests are added to the control 

chart.  

Objective 

We wanted to determine which of the four tests for stability to include with the attribute control 

charts in the Assistant. Our first goal was to identify the tests that significantly increased 

sensitivity to out-of-control conditions without significantly raising the false alarm rate. Our 

second goal was to ensure the simplicity and practicality of the charts. 

Method 

The four tests for stability for attribute charts correspond with tests 1-4 for special causes for 

variables control charts. With an adequate subgroup size, the proportion of defective items (P 

chart) or the number of defects per unit (U chart) follow a normal distribution. As a result, 

simulations for the variables control charts that are also based on the normal distribution will 

yield identical results for the sensitivity and false alarm rate of the tests. Therefore, we used the 

results of a simulation and a review of the literature performed for variables control charts to 

evaluate how the four tests for stability affect the sensitivity and the false alarm rate of the 

attribute charts. In addition, we evaluated the prevalence of special causes associated with the 

test. For details on the method(s) used for each test, see the Results section below and  

Appendix B. 
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Results 

Of the four tests used to evaluate stability in attribute charts, we found that tests 1 and 2 are the 

most useful: 

TEST 1: IDENTIFIES POINTS OUTSIDE OF THE CONTROL LIMITS 

Test 1 identifies points > 3 standard deviations from the center line. Test 1 is universally 

recognized as necessary for detecting out-of-control situations. It has a false alarm rate of only 

0.27%.  

TEST 2: IDENTIFIES SHIFTS IN THE PROPORTION OF DEFECTIVE ITEMS (P CHART) OR THE 
MEAN NUMBER OF DEFECTS PER UNIT (U CHART) 

Test 2 signals when 9 points in a row fall on the same side of the center line. We performed a 

simulation to determine the number of subgroups needed to detect a signal for a shift in the 

proportion of defective items (P chart) or a shift in the mean number of defects per unit (U 

chart). We found that adding test 2 significantly increases the sensitivity of the chart to detect 

small shifts in the proportion of defective items or the mean number of defects per unit. When 

test 1 and test 2 are used together, significantly fewer subgroups are needed to detect a small 

shift compared to when test 1 is used alone. Therefore, adding test 2 helps to detect common 

out-of-control situations and increases sensitivity enough to warrant a slight increase in the false 

alarm rate. 

Tests not included in the Assistant 

TEST 3: K POINTS IN A ROW, ALL INCREASING OR ALL DECREASING 

Test 3 is designed to detect drifts in the proportion of defective items or in the mean number of 

defects per unit (Davis and Woodall, 1988). However, when test 3 is used in addition to test 1 

and test 2, it does not significantly increase the sensitivity of the chart. Because we already 

decided to use tests 1 and 2 based on our simulation results, including test 3 would not add any 

significant value to the chart. 

TEST 4: K POINTS IN A ROW, ALTERNATING UP AND DOWN 

Although this pattern can occur in practice, we recommend that you look for any unusual trends 

or patterns rather than test for one specific pattern. 

Stability (Part II) - Subgroup size 
Although the P chart and the U chart monitor the stability of the process with attribute data, the 

normal distribution is used to approximate the distribution of the proportion of defective items 

(𝑝̂) in the P chart and the distribution of the number of defects per unit (𝑢̂) in the U chart. As the 

subgroup size increases, the accuracy of this approximation improves. Because the criteria for 

the tests used in each control chart are based on the normal distribution, increasing the 

subgroup size to obtain a better normal approximation improves the chart’s ability to accurately 

identify out-of-control situations and reduces the false alarm rate. When the proportion of 
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defective items or the number of defects per unit is low, you need larger subgroups to ensure 

accurate results. 

Objective 

We investigated the subgroup size that is needed to ensure that the normal approximation is 

adequate enough to obtain accurate results for the P chart and the U chart. 

Method 

We performed simulations to evaluate the false alarm rates for various subgroup sizes and for 

various proportions (p) for the P chart and for various mean numbers of defects per subgroup 

(c) for the U chart. To determine whether the subgroup size was large enough to obtain an 

adequate normal approximation and thus, a low enough false alarm rate, we compared the 

results with expected false alarm rate under the normal assumption (0.27% for Test 1 and 0.39% 

for test 2). See Appendix C for more details.  

Results 

P CHART 

Our research showed that the required subgroup size for the P chart depends on the proportion 

of defective items (p). The smaller the value of p, the larger the subgroup size (n) that is 

required. When the product np is greater than or equal to 0.5, the combined false alarm rate for 

both test 1 and test 2 is below approximately 2.5%. However, when the product np is less than 

0.5, the combined false alarm rate for tests 1 and 2 can be much higher, reaching levels well 

above 10%. Therefore, based on this criterion, the performance of the P chart is adequate when 

the value of np ≥ 0.5. 

U CHART 

Our research showed that the required subgroup size for the U chart depends on the number of 

defects per subgroup (c), which equals the subgroup size (n) times the number of defects per 

unit (u). The percentage of false alarms is highest when the number of defects c is small. When c 

= nu is greater than or equal to 0.5, the combined false alarm rate for both test 1 and test 2 is 

below approximately 2.5%. However, for values of c less than 0.5, the combined false alarm rate 

for tests 1 and 2 can be much higher, reaching levels well above 10%. Therefore, based on this 

criterion, the performance of the U chart is adequate when the value of c = nu ≥ 0.5. 

Based on the above results for the tests for special causes (Part I) and for the subgroup size (Part 

II), the Assistant Report Card displays the following status indicators when checking stability in 

the attribute control charts that are used in binomial and Poisson capability: 
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P chart – Binomial capability 

Status Condition 

 

No test 1 or test 2 failures on the chart  

and  

a𝑛𝑖  𝑝̅  ≥ 0.5 for all 𝑖 

where 

𝑛𝑖 = subgroup size for the ith subgroup 

𝑝̅ = mean proportion of defective items 

 

Test 1 or test 2 reveals one or more out-of-control points that may be due to special causes. 

 

The subgroup size may be too small.  

a𝑛𝑖  𝑝̅ < 0.5 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖 

 

U chart - Poisson capability 

Status Condition 

 

No test 1 or test 2 failures on the chart  

and 

a𝑛𝑖  u̅  ≥ 0.5 for all 𝑖 

where 

𝑛𝑖 = subgroup size for the ith subgroup 

𝑢̅ = mean number of defects per unit 

 

Test 1 or test 2 reveals one or more out-of-control points that may be due to special causes. 

 

The subgroup size may be too small.  

a𝑛𝑖  𝑢̅ ̅ < 0.5 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖 

 

Number of subgroups 
To ensure that the capability estimates accurately reflect your entire process, you should try to 

capture all the likely sources of variation in your process over time. If you increase the number 

of subgroups you collect, you are likely to increase the chance that you are capturing the 

different sources of variation. Collecting an adequate number of subgroups also helps to 

improve the precision of the limits of the control charts that are used to evaluate the stability of 

your process. However, collecting more subgroups requires more time and resources; therefore, 
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it is important to know how the number of subgroups affects the reliability of the capability 

estimates. 

Objective 

We investigated how many subgroups are needed to adequately represent the process and 

provide a reliable estimate of process capability. 

Method 

We reviewed the literature to find out the number of subgroups that is generally considered 

adequate for estimating process capability.  

Results 

According to the Statistical Process Control (SPC) manual, the number of subgroups you collect 

should be based on how long it takes to collect data that is likely to reflect the different sources 

of variation in your process (AIAG, 1995). That is, you should collect as many subgroups as is 

necessary to adequately represent your entire process. In general, to provide accurate tests of 

stability and a reliable estimate of process performance, AIAG (1995) recommends that you 

collect at least 25 subgroups. 

Based on these recommendations, the Assistant Report Card displays the following status 

indicator when checking the number of subgroups for binomial or Poisson capability analysis: 

Status Condition 

 

Number of subgroups > 25 

The number of subgroups should be enough to capture different sources of process variation when 
collected over an adequate period of time.  

 

Number of subgroups < 25 

Generally, you should collect at least 25 subgroups over an adequate period of time to capture 
different sources of process variation.  

 



 

BINOMIAL CAPABILITY AND POISSON CAPABILITY 8 

Expected Variation 
The traditional P charts and U charts that are used to assess the stability of the process prior to 

evaluating its capability assume the variation in the data follows the binomial distribution for 

defectives or a Poisson distribution for defects. The charts also assume that your rate of 

defectives or defects remains constant over time. When the variation in the data is either greater 

than or less than expected, your data may have overdispersion or underdispersion and the 

charts may not perform as expected. 

Overdispersion 

Overdispersion exists when the variation in your data is more than expected. Typically, some 

variation exists in the rate of defectives or defects over time, caused by external noise factors 

that are not special causes. In most applications of these charts, the sampling variation of the 

subgroup statistics is large enough that the variation in the underlying rate of defectives or 

defects is not noticeable. However, as the subgroup sizes increase, the sampling variation 

becomes smaller and smaller and at some point the variation in the underlying defect rate can 

become larger than the sampling variation. The result is a chart with extremely narrow control 

limits and a very high false alarm rate. 

Underdispersion 

Underdispersion exists when the variation in your data is less than expected. Underdispersion 

can occur when adjacent subgroups are correlated with each other, also known as 

autocorrelation. For example, as a tool wears out, the number of defects may increase. The 

increase in defect counts across subgroups can make the subgroups more similar than they 

would be by chance. When data exhibit underdispersion, the control limits on a traditional P 

chart or U chart may be too wide. If the control limits are too wide the chart will rarely signal, 

meaning that you can overlook special cause variation and mistake it for common cause 

variation. 

If overdispersion or underdispersion is severe enough, Minitab recommends using a Laney P’ or 

U’ chart. For more information, see Laney P’ and U’ charts below. 

Objective 

We wanted to determine a method to detect overdispersion and underdispersion in the data. 

Method 

We performed a literature search and found several methods for detecting overdispersion and 

underdispersion. We selected a diagnostic method found in Jones and Govindaraju (2001). This 

method uses a probability plot to determine the amount of variation expected if the data were 

from a binomial distribution for defectives data or a Poisson distribution for defects data. Then, 

a comparison is made between the amount of expected variation and the amount of observed 

variation. See Appendix D for details on the diagnostic method. 
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As part of the check for overdispersion, Minitab also determines how many points are outside of 

the control limits on the traditional P and U charts. Because the problem with overdispersion is a 

high false alarm rate, if only a small percentage of points are out of control, overdispersion is 

unlikely to be an issue.  

Results 

Minitab performs the diagnostic check for overdispersion and underdispersion after the user 

selects OK in the dialog box for the P or U chart before the chart is displayed.  

Overdispersion exists when these following conditions are met: 

 The ratio of observed variation to expected variation is greater than 130%. 

 More than 2% of points are outside the control limits. 

 The number of points outside the control limits is greater than 1.  

If overdispersion is detected, Minitab displays a message that asks if the user wants to display a 

Laney P’ or U’ chart. Shown below is the message for the P’ chart: 
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Underdispersion exists when the ratio of observed variation to expected variation is less than 

75%. If underdispersion is detected, Minitab displays a message that asks if the user wants to 

display a Laney P’ or U’ chart. Shown below is the message for the P’ chart: 

 

If the user chooses to use the Laney chart, Minitab displays the Laney charts in the Diagnostic 

report. If the user chooses not to use the Laney chart, Minitab displays both the traditional chart 

and the Laney chart in the Diagnostic report. Showing both charts allows the user to see the 

effect of overdispersion or underdispersion on the traditional P or U chart and determine 

whether the Laney chart is more appropriate for their data. 

Additionally, when checking for overdispersion or underdispersion, the Assistant Report Card 

displays the following status indicators: 

Status Condition 

 

Dispersion ratio > 130%, less than 2% of points outside control limits or number of points 
outside control limits = 1  

Dispersion ratio > 75% and <= 130% 

Dispersion ratio > 130%, more than 2% of points outside control limits and number of points 
outside  

 

Where 

Dispersion ratio = 100*(observed variation)/(expected variation) 

 

Dispersion ratio > 130%, more than 2% of points outside control limits and number of points 
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Amount of data 
The Assistant reports for binomial and Poisson capability analyses also include a 95% confidence 

interval for the percentage of defective items or the number of defects per unit, respectively. 

This interval is calculated using standard statistical methodology and did not require any special 

research or simulations.  

The Assistant Report Card displays the following status indicator when checking the amount of 

data: 

Status Condition 

 

Binomial capability 

The 95% confidence interval for % defective is (a, b). If this interval is too wide for your application, 
you can gather more data to increase the precision. 

 

Poisson capability 

The 95% confidence interval for the number of defects per unit is (a, b). If this interval is too wide for 
your application, you can gather more data to increase the precision.  

Charts 
Traditional P charts and U charts assume the variation in the data follows the binomial 

distribution for defectives data or a Poisson distribution for defect data. The charts also assume 

that your rate of defectives or defects remains constant over time. Minitab performs a check to 

determine whether the variation in the data is either greater than or less than expected, an 

indication the data may have overdispersion or underdispersion. See the Expected Variation 

data check above. 

If overdispersion or underdispersion are present in the data, the traditional P and U charts may 

not perform as expected. Overdispersion can cause the control limits to be too narrow, resulting 

in a high false alarm rate. Underdispersion can cause the control limits to be too wide, which can 

cause you to overlook special cause variation and mistake it for common cause variation. 

Objective 

Our objective was to identify an alternative to the traditional P and U charts when 

overdispersion or underdispersion is detected in the data.  

Method 

We reviewed the literature and determined that the best approach for handling overdispersion 

and underdispersion are the Laney P’ and U’ charts (Laney, 2002). The Laney method uses a 

revised definition of common cause variation, which corrects the control limits that are either 

too narrow (overdispersion) or too wide (underdispersion).  
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In the Laney charts, common cause variation includes the usual short-term within subgroup 

variation but also includes the average short-term variation between consecutive subgroups. 

The common cause variation for Laney charts is calculated by normalizing the data and using 

the average moving range of adjacent subgroups (referred to as Sigma Z on the Laney charts) to 

adjust the standard P or U control limits. Including the variation between consecutive subgroups 

helps correct the effect when the variation in the data across subgroups is greater than or less 

than expected due to fluctuations in the underlying defect rate or a lack of randomness in the 

data.   

After Sigma Z is calculated, the data are transformed back to the original units. Using the 

original data units is beneficial because if the subgroup sizes are not the same, the control limits 

are allowed to vary just as they are in the traditional P and U charts. For more details on Laney P’ 

and U’ charts, see Appendix E. 

Results 

Minitab performs a check for overdispersion or underdispersion and if either condition is 

detected, Minitab recommends a Laney P’ or U’ chart. 
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Appendix A: Additional assumptions 
for attribute control charts 
The P chart and the U chart require additional assumptions that are not evaluated by data 

checks: 

P Chart U Chart 

 The data consists of n distinct items, with each 
item classified as either defective or not 
defective. 

 The probability of an item being defective is 
the same for each item within a subgroup. 

 The likelihood of an item being defective is 
not affected by whether the preceding item is 
defective or not. 

 The counts are counts of discrete events. 

 The discrete events occur within some well-
defined finite region of space, time, or 
product. 

 The events occur independently of each other 
and the likelihood of an event is proportional 
to the size of area of opportunity. 

 

For each chart, the first two assumptions are an inherent part of the data collection process; the 

data itself cannot be used to check whether these assumptions are satisfied. The third 

assumption can be verified only with a detailed and advanced analysis of data, which is not 

performed by the Assistant. 
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Appendix B: Stability - Tests for 
special causes  

Simulation B1: How adding test 2 to test 1 affects 
sensitivity 
Test 1 detects out-of-control points by signaling when a point is greater than 3 standard 

deviations from the center line. Test 2 detects shifts in the proportion of defective items or the 

number of defects per unit by signaling when 9 points in a row fall on the same side of the 

center line. 

To evaluate whether using Test 2 with Test 1 improves the sensitivity of the attribute charts, we 

established control limits based on a normal (p, √
𝑝(1−𝑝)

𝑛
) (p is the proportion of defective items 

and n is the subgroup size) distribution for the P chart and on a normal (𝑢 √𝑢) (u is the mean 

number of defects per unit) distribution for the U chart. We shifted the location (p or u) of each 

distribution by a multiple of the standard deviation (SD) and then recorded the number of 

subgroups needed to detect a signal for each of 10,000 iterations. The results are shown in  

Table 1.  

Table 1  Average number of subgroups until a test 1 failure (Test 1), test 2 failure (Test 2) or test 

1 or test 2 failure (Test 1 or 2). The shift equals a multiple of the standard deviation (SD).  

Shift Test 1 Test 2 Test 1 or 2 

0.5 SD 154 84 57 

1 SD 44 24 17 

1.5 SD 15 13 9 

2 SD 6 10 5 

 

As shown in the table, when both tests are used (Test 1 or 2 column) an average of 57 

subgroups are needed to detect a 0.5 standard deviation shift in the location, compared to an 

average of 154 subgroups needed to detect a 0.5 standard deviation shift when test 1 is used 

alone. Therefore, using both tests significantly increases sensitivity to detect small shifts in the 

proportion of defective items or the mean number of defects per unit. However, as the size of 

the shift increases, adding test 2 does not increase the sensitivity as significantly.  
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Appendix C: Stability - Subgroup size 
The central limit theorem states that the normal distribution can approximate the distribution of 

the average of an independent, identically distributed random variable. For the P chart, 𝑝̂ 

(subgroup proportion) is the average of an independent, identically distributed Bernoulli 

random variable. For the U chart, 𝑢̂ (subgroup rate) is the average of an independent, identically 

distributed Poisson random variable. Therefore, the normal distribution can be used as an 

approximation in both cases.  

The accuracy of the approximation improves as the subgroup size increases. The approximation 

also improves with a higher proportion of defective items (P chart) or a higher number of 

defects per unit (U chart). When either the subgroup size is small or the values of p (P chart) or u 

(U chart) are small, the distributions for 𝑝̂ and 𝑢̂ are right skewed, which increases the false alarm 

rate. Therefore, we can evaluate the accuracy of the normal approximation by looking at the 

false alarm rate and we can also determine the minimum subgroup size necessary to obtain an 

adequate normal approximation.  

To do this, we performed simulations to evaluate the false alarm rates for various subgroup sizes 

for the P chart and the U chart and compared the results with the expected false alarm rate 

under the normal assumption (0.27% for Test 1 and 0.39% for test 2). 

Simulation C1: Relationship between subgroup size, 
proportion, and false alarm rate of the P chart 
Using an initial set of 10,000 subgroups, we established the control limits for various subgroup 

sizes (n) and proportions (p). We also recorded the percentage of false alarms for an additional 

2,500 subgroups. We then performed 10,000 iterations and calculated the average percentage 

of false alarms from test 1 and test 2, as shown in Table 2. 

Table 2  % of false alarms due to test 1, test 2 (np) for various subgroup sizes (n) and 

proportions (p) 

 p 

Subgroup 
Size (n) 

0.001 0.005 0.01 0.05 0.1 

10 0.99, 87.37 (0.01) 4.89, 62.97 (0.05) 0.43, 40.14 (0.1) 1.15, 1.01 (0.5) 1.28, 0.42 (1) 

50 4.88, 63.00 (0.05) 2.61, 10.41 (0.25) 1.38, 1.10 (0.5) 0.32, 0.49 (2.5) 0.32, 0.36 (5) 

100 0.47, 40.33 (0.10) 1.41, 1.12 (0.5) 1.84, 0.49 (1) 0.43, 0.36 (5) 0.20, 0.36 
(10) 
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 p 

Subgroup 
Size (n) 

0.001 0.005 0.01 0.05 0.1 

150 1.01, 25.72 (0.15) 0.71, 0.43 (0.75) 0.42, 0.58 (1.5) 0.36, 0.42 (7.5) 0.20, 0.36 
(15) 

200 1.74, 16.43 (0.2) 1.86, 0.50 (1.00) 0.43, 0.41 (2) 0.27, 0.36 (10) 0.34, 0.36 
(20) 

500 1.43, 1.12 (0.5) 0.42, 0.50 (2.5) 0.52, 0.37 (5) 0.32, 0.37 (25) 0.23, 0.36 
(50) 

 

The results in Table 2 show that the percentage of false alarms is generally highest when the 

proportion (p) is small, such as 0.001 or 0.005, or when the sample size is small (n = 10). 

Therefore, the percentage of false alarms is highest when the value of the product np is small, 

and lowest when np is large. When np is greater or equal to 0.5, the combined false alarm rate 

for both test 1 and test 2 is below approximately 2.5%. However, for values of np less than 0.5, 

the combined false alarm rate for tests 1 and 2 is much higher, reaching levels well above 10%. 

Therefore, based on this criterion, the performance of the P chart is adequate when the value of 

np ≥ 0.5. Thus, the subgroup size should be at least 
0.5

𝑝̅
 . 

Simulation C2: Relationship between subgroup size, 
number of defects per unit, and false alarm rate of 
the U chart 
Using an initial set of 10,000 subgroups, we established the control limits for various subgroup 

sizes (n) and number of defects per subgroup (c). We also recorded the percentage of false 

alarms for an additional 2,500 subgroups. We then performed 10,000 iterations and calculated 

the average percent of false alarms from test 1 and test 2, as shown in Table 3. 

Table 3  % of false alarms due to test 1, test 2 for various number of defects per subgroup (c = 

nu) 

c 0.1 0.3 0.5 0.7 1.0 3.0 5.0 10.0 30.0 50 

% False 
alarms 

0.47, 
40.40 

3.70, 
6.67 

1.44, 
1.13 

0.57, 
0.39 

0.36, 
0.51 

0.38, 
0.40 

0.54, 
0.38 

0.35, 
0.37 

0.29, 
0.37 

0.25, 
0.37 

 

The results in Table 3 show that the percentage of false alarms is highest when the product of 

the subgroup size (n) times the number of defects per unit (u), which equals the number of 

defects per subgroup (c), is small. When c is greater or equal to 0.5, the combined false alarm 

rate for both test 1 and test 2 is below approximately 2.5%. However, for values of c less than 

0.5, the combined false alarm rate for tests 1 and 2 is much higher, reaching levels well above 
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10%. Therefore, based on this criterion, the performance of the U chart is adequate when the 

value of c = nu ≥ 0.5. Thus, the subgroup size should be at least 
0.5

u̅
 . 
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Appendix D: 
Overdispersion/Underdispersion 
Let di be the defective count from subgroup i, and ni be the subgroup size.  

 

First, normalize the defective counts. To account for possibly different subgroup sizes, use 

adjusted defective counts (adjdi): 

adjdi = adjusted defective count for subgroup i = 
𝑑𝑖

𝑛𝑖
(𝑛̅), where 

𝑛̅  = average subgroup size 

Xi = sin-1  √
𝑎𝑑𝑗𝑑𝑖+3

8⁄

𝑛̅+0.75
 

 

The normalized counts (Xi) will have a stdev equal to 
1

√4∗ 𝑛̅
. This means that 2 standard 

deviations is equal to 
1

√𝑛̅
. 

 

Then, generate a standard normal probability plot using the normalized counts as data. A 

regression line is fit using only the middle 50% of the plot points. Find the 25th and 75th 

percentiles of the transformed count data and use all X-Y pairs ≥ 25th percentile and ≤ 75th 

percentile. This line is used to obtain the predicted transformed count values corresponding to Z 

values of -1 and +1. The “Y” data in this regression are the normal scores of the transformed 

counts and the “X” data are the transformed counts. 

 

Calculate the observed variation as follows: 

Let Y(-1) be the predicted transformed count for Z = -1 

Let Y(+1) be the predicted transformed count for Z = +1 

Observed estimate of 2 standard deviations = Y(+1) – Y(-1). 

 

Calculate the expected variation as follows: 

Expected estimate of 2 standard deviations = 
1

√n̅
   

 

Calculate the ratio of observed variation to expected variation and convert to a percentage. If 

the percentage is > 130%, more than 2% of the points are outside the control limits, and the 
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number of points outside the control limits > 1, there is evidence of overdispersion. If the 

percentage is < 75%, there is evidence of underdispersion. 
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Appendix E:  
The concept behind the Laney P’ and U’ charts is to account for cases where the observed 

variation between subgroups does not match the expected variation if the subgroup data were 

from a random process with a constant rate of defects or defectives. Small changes in the 

underlying rate of defects or defectives occur normally in every process. When subgroup sizes 

are relatively small, the sampling variation in the subgroups is large enough so that these small 

changes are not noticeable. As subgroup sizes increase, the sampling variation decreases, and 

the small changes in the underlying rate of defects or defectives become large enough to 

adversely affect the standard P and U charts by increasing the false alarm rate. Some examples 

have shown false alarm rates to be as high as 70%. This condition is known as overdispersion. 

An alternative method was developed to remedy this issue, which normalizes the subgroup p or 

u values and plots the normalized data in an I Chart. The I Chart uses a moving range of the 

normalized values to determine its control limits. Thus, the I Chart method changes the 

definition of common cause variation by adding in the variation in the defectives or defect rate 

from one subgroup to the next.  

The Laney method transforms the data back to the original units. The advantage of this is that if 

the subgroups are not all the same size, the control limits will not be fixed, as they are with the I 

Chart method.  

The P’ and U’ charts combine the new definition of common cause variation with the variable 

control limits one would expect from having different subgroup sizes. Thus, the key assumption 

for these charts is that the definition of common cause variation is changed – it includes the 

usual short-term variation that is present within the subgroups plus the average short-term 

variation one would expect to see between consecutive subgroups. 

 
Let 

Xi = number of defectives in subgroup i 

ni = subgroup size for subgroup i 

pi = proportion defective for subgroup i 

𝑝̅ = 
∑ 𝑋𝑖

∑ 𝑛𝑖
 

𝜎𝑝𝑖 = √
𝑝̅ ∗ (1 − 𝑝̅)

𝑛𝑖
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First, convert the pi to z-scores: 

𝑍𝑖 =
𝑝𝑖 − 𝑝̅

𝜎𝑝𝑖
 

 

Next, a moving range of length 2 is used to evaluate the variation in the z-scores and calculate 

Sigma Z (z). 

𝜎𝑧 =
𝑀𝑅̅̅̅̅̅

1.128


where 1.128 is an unbiasing constant. 

 

Transform the data back to original scale: 

𝑝𝑖 = 𝑝̅ + 𝜎𝑝𝑖 ∗ 𝜎𝑧 

 

Thus, the standard deviation of pi is: 

𝑠𝑑(𝑝𝑖) = 𝜎𝑝𝑖 ∗ 𝜎𝑧  

 

The control limits and center line are calculated as: 

Center line = 𝑝̅ 

UCL= 𝑝̅ + 3 ∗ 𝑠𝑑(𝑝𝑖) 

LCL = 𝑝̅ − 3 ∗ 𝑠𝑑(𝑝𝑖) 

 
Let 

Xi = number of defectives in subgroup i 

ni = subgroup size for subgroup i 

ui = proportion defective for subgroup i 

 

𝑢̅ = 
∑ 𝑋𝑖

∑ 𝑛𝑖
 

𝜎𝑢𝑖 = √
𝑢̅ ∗ (1 − 𝑢̅)

𝑛𝑖
  

 

First, convert the pi to z-scores: 

𝑍𝑖 =
𝑢𝑖 − 𝑢̅

𝜎𝑢𝑖
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Next, a moving range of length 2 is used to evaluate the variation in the z-scores and calculate 

Sigma Z (z). 

𝜎𝑧 =
𝑀𝑅̅̅̅̅̅

1.128


where 1.128 is an unbiasing constant. 

 

Transform the data back to original scale: 

𝑢𝑖 = 𝑢̅ + 𝜎𝑢 ∗ 𝜎𝑧 

 

Thus, the standard deviation of pi is: 

𝑠𝑑(𝑢𝑖) = 𝜎𝑢𝑖 ∗ 𝜎𝑧  

 

The control limits and center line are calculated as: 

Center line = 𝑢̅ 

UCL= 𝑢̅ + 3 ∗ 𝑠𝑑(𝑢𝑖) 

LCL= 𝑢̅ − 3 ∗ 𝑠𝑑(𝑢𝑖) 
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