
Minitab®

Minitab®

Minitab®

Minitab®

Minitab Automation

© 2024 by Minitab, LLC. All rights reserved.

Minitab®, Minitab Connect®, Minitab Model Ops®, Minitab Engage®, Minitab Workspace®, Salford Predictive
Modeler®, SPM®, and the Minitab® logo are all registered trademarks of Minitab, LLC, in the United States and
other countries. Additional trademarks of Minitab, LLC can be found at www.minitab.com. All other marks
referenced remain the property of their respective owners.

Release 22.1

2

https://www.minitab.com

Contents
1 Getting Started..4

Introducing Automation in Minitab...4
Strategies for Handling Errors in COM overview..4

2 Data Types..6
Minitab Data Types...6

3 Data Model...8
Minitab Automation objects...8
Minitab Command Automation Objects..9

4 My Menu..11
My Menu Overview..11

A Minitab Automation Object Reference..22
Application object...22
ApplicationOptions object..26
UserInterface object...29
Project object..31

B Worksheet Object Reference...40
Worksheets Collection object..40
Worksheet object..44
Columns Collection object..50
Column object..55
Constants Collection object..64
Constant object...68
Matrices Collection object...73
Matrix object...77

C Command Object Reference..83
Commands Collection object...83
Command object..86
Outputs Collection object..90
Output object...92
OutputDocument object..96
Graph object...99

3

1 Getting Started

Introducing Automation in Minitab
The COM automation library contains a set of standard COM (Component Object Model) objects that expose much
of Minitab’s internal functionality. You can use this COM library with any COM-compliant language.

Note Automation in Minitab is limited based on the applicable License Agreement. The number of automation users is restricted to
whichever of the following is the lowest value: three times the number of simultaneous users permitted to use Minitab or the total number
of employees.

Strategies for Handling Errors in COM overview
HRESULT values
COM returns an HRESULT value for all methods in all component interfaces. An HRESULT indicates whether a COM
method succeeded or failed. HRESULTs also report any errors in making function calls or interface method calls and
identify the facilities associated with the errors, such as RPC, WIN32, or ITF for interface-specific errors. Lastly, system
APIs provide a lookup from an HRESULT to a string that describes the error condition.

Using methods that return HRESULTs is fundamental to well-written components and is essential to the debugging
process. Microsoft® Visual Basic automatically defines each method with an HRESULT as a return. In Microsoft Visual
C++, you must explicitly return an HRESULT.

ErrorInfo objects
ErrorInfo objects are often called COM exceptions because they allow an object to pass (or throw) rich error information
to its caller, even across apartment boundaries. The value of this generic error object is that it supplements an HRESULT,
extending the type of error description, the source of the error, and the interface identifier of the method that originated
the error. You can also include pointers to an entry in a Help file.

Automation provides three interfaces to manage the error object:

• Components must implement the ISupportErrorInfo interface to advertise their support for the ErrorInfo
object.

• When an error occurs, the component uses the ICreateErrorInfo interface to initialize an error object.

• After the caller inspects the HRESULT and finds that the method call failed, it queries the object to see whether it
supports the ErrorInfo object. If it does, the caller uses the IErrorInfo interface to retrieve the error information.

Visual Basic programmers have easy access to the ErrorInfo object, which is exposed through the Err object. You
can raise errors with the Err Raise function and catch errors with the On Error statement. The Visual Basic run-time
layer takes care of the mapping for you. If you are using the Visual C++ COM compiler support, you can use the
_com_raise_error class to report an error, and the _com_error class to retrieve error information. COM will not
propagate traditional C++ exceptions as extended IErrorInfo information.

HRESULT Definitions
The return value of COM functions and methods is an HRESULT. The following table lists the standard HRESULT
definitions. To use the return values, you must include winerror.h in your project.

4

Minitab Statistical Software Getting Started

DefinitionHRESULT

The QueryInterface function did not recognize the requested interface. The
interface is not supported.

E_NOINTERFACE

The function contains no implementation.E_NOTIMPL

An unspecified failure has occurred.E_FAIL

The function failed to allocate necessary memory.E_OUTOFMEMORY

Invalid pointer.E_POINTER

One or more arguments are invalid.E_INVALIDARG

A catastrophic failure has occurred.E_UNEXPECTED

Invalid handle.E_HANDLE

Operation aborted.E_ABORT

Note The information in this section is from the MSDN Library - January 2001, platform SDK:COM (Component Services).

5

Minitab Statistical Software Getting Started

2 Data Types

Minitab Data Types

MtbAppStatusTypes
Defines the different Mtb Application status types.

0 = ASReady (Minitab is ready to accept commands)

1 = ASBusy (Minitab is busy executing a command)

2 = ASError (The last command executed caused an error)

3 = ASQuit (Quit has been called but the application object is not yet destroyed)

MtbDataTypes
Defines the different data types that are currently supported.

0 = Text

1 = Numeric

2 = DateTime

3 = DataUnassigned

MtbFormulaStatusTypes
Defines the state of the Formula for a Column or Constant object.

0 = FSNone

1 = FSUpToDate

2 = FSOutOfDate

3 = FSInvalid

MtbGraphFileTypes
Defines the different graph file types.

1 = GFJPEG

2 = GFPNGGrayscale

3 = GFPNGColor

3 = GFPNGHighColor

5 = GFTIFGrayscale

6

Minitab Statistical Software Data Types

6 = GFTIFColor

7 = GFBMPGrayscale

8 = GFBMPColor

8 = GFBMPHighColor

10 = GFGIF

11 = GFEMF

MtbOutputFileTypes
Defines the different Output File types.

0 = OFPlainText

1 = OFHTML

2 = OFRTF

100 = OFDefault

MtbOutputTypes
Defines the different output types allowed in an Output object.

0 = OTGraph

1 = OTTable

4 = OTMessage

MtbValueOrderTypes
Defines the display ordering associated with a column.

0 = Alphabetical

1 = WorksheetOrder

2 = UserDefined

7

Minitab Statistical Software Data Types

3 Data Model

Minitab Automation objects

DescriptionObject

The Application object serves as the root node in the Minitab automation
server object hierarchy. The Application object is the only object in the
hierarchy that can be created by the client. All the lower objects in the
hierarchy are accessed through the Application object or through objects
contained within the Application object. The Application object provides an
interface to allow the client to set and get application-wide global properties.

Application on page 22

Use the ApplicationOptions object to read or set options that pertain
to the Application object. Use the Options property of the Application
object to access ApplicationOptions. For more information on the
Application object, go to Application object on page 22.

ApplicationOptions on page 26

The UserInterface object allows control of the Minitab host.UserInterface on page 29

The Project object contains all the information related to an individual
project, including the Worksheets collection and the Commands collection.

Project on page 31

The Commands collection contains the commands that have been issued to
Minitab during the session.
See Minitab Command Automation Objects on page 9 for the data model.

Commands collection on page 83

TheWorksheets collection is a set of all theWorksheet objects within a Project
object. It supports the standard collection properties and methods.

Worksheets collection on page 40

8

Minitab Statistical Software Data Model

DescriptionObject

The Worksheet object contains all the information related to an individual
worksheet, including the Columns, Constants, and Matrices collections,
which provide access to all the columns, constants, and matrices in the
worksheet.

Worksheet on page 44

The Columns collection is a set of all the Column objects within aWorksheet
object. It supports the standard collection properties and methods.

Columns collection on page 50

The Column object contains all the information related to an individual
column. The data type on page 6 for each Column object can be Text,
Numeric, DateTime, or DataUnassigned.

Column on page 55

The Constants collection is a set of all the Constant objects within a
Worksheet object. It supports the standard collection properties and
methods.

Constants collection on page 64

The Constant object contains all the information related to an individual
constant. The Constant object can contain numeric or text values.

Constant on page 68

The Matrices collection is a set of all the Matrix objects within a
Worksheet object. It supports the standard collection properties and
methods.

Matrices collection on page 73

The Matrix object contains all the information related to an individual matrix.
The Matrix object can contain only numeric data values.

Matrix on page 77

Minitab Command Automation Objects

DescriptionObject

The Commands collection contains the commands that have been issued to
Minitab during the session.

Commands collection on page 83

An OutputDocument object contains all output generated by a single
Command object or by all commands in the Commands collection.

OutputDocument on page 96

Command objects are created when you execute a Minitab command either
programmatically or directly in Minitab.

Command on page 86

9

Minitab Statistical Software Data Model

DescriptionObject

The Outputs collection for each Command object contains all the output
generated by that command.

Outputs collection on page 90

Each Output object contains one component of the output from a Minitab
Command object.

Output on page 92

Each Graph object contains a single graph generated by aMinitab Command
object.

Graph on page 99

10

Minitab Statistical Software Data Model

4 My Menu

My Menu Overview
By creating specialized dynamic link libraries (DLLs) and placing them in the AddIns folder of your Minitab directory,
you can add customized menus to Minitab that allow you to do the following:

• Run a Minitab macro from the menu.

• Display a customized dialog box for running a Minitab macro.

• Launch customized interfaces to corporate databases, or company-created macros.

• Create custom Minitab procedures using Minitab's new COM objects.

• Launch a separate executable from Minitab.

Your custom menus will appear at the right end of the menu bar. Minitab's new customizable menus and toolbars
allow you to move any of the items from your custom menus to any menu or toolbar you would like.

My Menu Addin DLLs
To specify the layout, items, and actions for a custom menu, you need to create a DLL and place it in the AddIns folder
of your Minitab directory.

Each Addin DLL must include the following 9 methods:

public string GetName on page 13()
This method returns the friendly name of your Addin. Both the name and the description of the Addin are stored
in the registry.

public string GetDescription on page 13()
This method returns the description of your Addin.

public void GetMenuItems on page 13(ref string sMainMenu, ref Array saMenuItems, ref int iFlags)
This method returns the text for themain menu and eachmenu item. You can return "|" to create a menu separator
in your menu items. You must instantiate the menu items array to fit your number of items.

public void OnConnect on page 13(int iHwnd, object pApp, ref int iFlags)
This method is called as Minitab is initializing your Addin. The "iHwnd" parameter is the handle to the mainMinitab
window. The "pApp" parameter is a reference to the "Minitab Automation object." You can hold onto either of
these for use in your Addin. "iFlags" is used to tell Minitab if your Addin has dynamic menus (i.e., should be
reloaded each time Minitab starts up). Set iFlags to 1 for dynamic menus and 0 for static.

public void OnDisconnect on page 13()
This method is called as Minitab is closing your Addin.

public string OnDispatchCommand on page 13(int iMenu)
This method is called whenever a user selects one of your menu items. The "iMenu" variable should be equivalent
to the menu item index set in "GetMenuItems".

public void OnNotify on page 13(AddinNotifyType eAddinNotifyType)
This method is called when Minitab notifies your Addin that something has changed. Use the "eAddinNotifyType"
to figure out what changed.

11

Minitab Statistical Software My Menu

public bool QueryCustomCommand on page 13(string sCommand)
This method is called whenMinitab asks your Addin if it supports a custom command. The argument "sCommand"
is the name of the custom command. Return "true" if you support the command.

public void ExecuteCustomCommand on page 13(string sCommand, ref Array saArgs)
This method is called when Minitab asks your Addin to execute a custom command. The argument "sCommand"
is the name of the command, and "saArgs" is an array of arguments.

Create a Custom Menu
To create a custom menu, refer to the following high-level steps.
1. Create a C# Class Library on page 12.

2. Add COM References on page 12.

3. Build and Test Your Solution on page 13.

Before you start
• Refer to the example DLL, along with all supporting files for the C# project used to create it, which are located in

the MyMenu folder of your Minitab directory.

• Refer to portions of the code from the main module of this project, which are displayed in My Menu - C# Example
on page 13.

• Be sure that the add-in implements the add-in interface.

• Add the Minitab Addin Interface to the project references.

• If you want to use the Minitab objects, add a reference to the Minitab Type Library.

• Add the following four attributes to your class:
[ComVisible(true)]

[Guid("40B99FD8-21FB-4E92-AD9B-7DE6358B675B")]
[ClassInterface(ClassInterfaceType.None)]
[ProgId("MyMenu.AddIn")]

Note When creating multiple menu items, be sure to create a unique GUID for each item.

• Add this attribute to your class:
[DllExport("DllRegisterServer", CallingConvention.StdCall)]

public static int DllRegisterServer()

Create a C# Class Library
1. Open Microsoft® Visual Studio.

2. Choose File > New > Project.

3. Create C# class library, then click OK.

4. From the Solutions Explorer, right-click the solution and choose Configuration Manager.

5. In the Configuration Manager dialog box, under Active solution platform, choose <New...>.

6. In the New Solution Platform dialog box, choose x86 as the new platform, click OK, and then Close.

Add COM References
1. In Microsoft® Visual Studio, choose Tools > NuGet Package Manager > Package Manager Console.

12

Minitab Statistical Software My Menu

2. At the PackageManager prompt, type Install-Package UnmanagedExports, then press Enter. (For the 64-bit version
of Microsoft® Visual Studio, type Install-Package UnmanagedExports-Version 1.2.3-Beta.)
Under References, you now have a reference to RGiesecke.DllExport.

3. Under the project, right-click References and choose Add Reference.

4. In the Reference Manager, click COM, select the following libraries, then click OK.

• Minitab Addin Interface

• Mtb Type Library
Under References, you now have references toMinitabAddinTLB andMtb.

Build and Test Your Solution
1. In Visual Studio, open the Class1.cs file in your solution and add the following directive:

using RGiesecke.DllExport;

2. Choose Build > Build Solution.

3. Create a compiled resource file.
a. Open a Visual Studio Developer Command prompt as an administrator.

b. At the prompt, change the directory to the object (OBJ) folder where the MyMenu.DLL file is located.

c. Type the following commands and press Enter:
TlbExp.exe /win32 MyMenu.dll

echo 1 typelib MyMenu.tlb > MyMenu.rc

rc.exe MyMenu.rc

4. In Visual Studio, point to the resource file you created in the previous step.
a. Right-click the project in your solution and choose Properties.

b. On the Application tab, under Resources, click Resource file.

c. Click the browse button .

d. Browse to the compiled resource (.res) file and click OK.

5. Choose Build > Rebuild Solution.

6. Test the solution.
a. Copy the MyMenu.DLL file from the binary (BIN) folder to the English\Addins folder of your Minitab installation

directory, for example, C:\Program Files (x86)\Minitab\Minitab 19.

b. Run Minitab as an administrator.

c. In Minitab, choose View > Customize.

d. On theMenu tab, under Application Frame Menus, click Reset.

My Menu - C# Example

using System;
using System.Collections;

13

Minitab Statistical Software My Menu

using System.Diagnostics;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;
using Microsoft

®
.Win32;

using MinitabAddinTLB;
using Mtb;
using Application = Mtb.Application;

namespace MyMenu
{

[ComVisible(true)]
[Guid("40B99FD8-21FB-4E92-AD9B-7DE6358B675B")]
[ClassInterface(ClassInterfaceType.None)]
[ProgId("MyMenu.AddIn")]
public class AddIn : IMinitabAddin
{

internal static Application gMtbApp;

[DllExport("DllRegisterServer", CallingConvention.StdCall)]
public static int DllRegisterServer()
{

try
{

SetUpCLSID(Registry.ClassesRoot);
SetUpCLSID(Registry.LocalMachine.OpenSubKey("SOFTWARE",

true).OpenSubKey("Classes", true));
}
catch (Exception)
{

// Probably didn't have permissions to modify the registry
}

return 0;
}

private static void SetUpCLSID(RegistryKey root)
{

Type type = typeof(AddIn);
string guid = type.GUID.ToString("B");
string runtimeVersion = Environment.Version.ToString();
string codeBase = Assembly.GetExecutingAssembly().CodeBase;

RegistryKey typeRoot = root.CreateSubKey(type.FullName);
typeRoot.SetValue("", type.FullName);
typeRoot.CreateSubKey("CLSID").SetValue("", guid);

RegistryKey clsidGuid = root.OpenSubKey("CLSID", true).CreateSubKey(guid);
clsidGuid.SetValue("", type.FullName);

clsidGuid.CreateSubKey("Implemented
Categories").CreateSubKey("{62C8FE65-4EBB-45e7-B440-6E39B2CDBF29}");

RegistryKey server = clsidGuid.CreateSubKey("InprocServer32");
server.SetValue("", "mscoree.dll");
server.SetValue("ThreadingModel", "Both");
server.SetValue("Class", type.FullName);
server.SetValue("Assembly", type.Assembly.FullName);
server.SetValue("RuntimeVersion", runtimeVersion);
server.SetValue("CodeBase", codeBase);

14

Minitab Statistical Software My Menu

RegistryKey serverVersion = server.CreateSubKey("1.0.0.0");
serverVersion.SetValue("Class", type.FullName);
serverVersion.SetValue("Assembly", type.Assembly.FullName);
serverVersion.SetValue("RuntimeVersion", runtimeVersion);
serverVersion.SetValue("CodeBase", codeBase);

clsidGuid.CreateSubKey("ProdId").SetValue("", type.FullName);
}

public void OnConnect(IntPtr iHwnd, object pApp, ref int iFlags)
{

// This method is called as Minitab is initializing your add-in.
// The “iHwnd” parameter is the handle to the main Minitab window.
// The “pApp” parameter is a reference to the “Minitab Automation object.”
// You can hold onto either of these for use in your add-in.
// “iFlags” is used to tell Minitab if your add-in has dynamic menus
// (i.e. should be reloaded each time
// Minitab starts up). Set iFlags to 1 for dynamic menus and 0 for static.
gMtbApp = pApp as Application;
// Static menus:
iFlags = 0;
return;

}

public void OnDisconnect()
{

// This method is called as Minitab is closing your add-in.
GC.Collect();
GC.WaitForPendingFinalizers();
GC.Collect();
GC.WaitForPendingFinalizers();
try
{

Marshal.ReleaseComObject(gMtbApp);
gMtbApp = null;

}
catch
{
}
return;

}

public string GetName()
{

// This method returns the friendly name of your add-in:
// Both the name and the description of the add-in are stored in the registry.
return "Example C♯ Minitab Add-In";

}

public string GetDescription()
{

// This method returns the description of your add-in:
return "An example Minitab add-in written in C♯ using the “My Menu”

functionality.";
}

public void GetMenuItems(ref string sMainMenu, ref Array saMenuItems, ref int iFlags)

{
// This method returns the text for the main menu and each menu item.
// You can return "|" to create a menu separator in your menu items.

15

Minitab Statistical Software My Menu

sMainMenu = "&My Menu"; // This string is the name of the menu.

saMenuItems = new string[5]; // The strings in this array are the names of the

// items on the aforementioned menu.

saMenuItems.SetValue("Describe &column(s)…", 0);
saMenuItems.SetValue("Rename active &worksheet…", 1);
saMenuItems.SetValue("|", 2);
saMenuItems.SetValue("&DOS window", 3);
saMenuItems.SetValue("&Geometric Mean and Mean Absolute Difference…", 4);

// Flags is not currently used:
iFlags = 0;

return;
}

public string OnDispatchCommand(int iMenu)
{

// This method is called whenever a user selects one of your menu items.
// The iMenu variable should be equivalent to the menu item index set in

“GetMenuItems.”
string command = string.Empty;
DialogResult dialogResult = new DialogResult();
switch (iMenu)
{

case 0:
// Describe column(s):
FormDescribe formDescribe = new FormDescribe(ref gMtbApp);
// Fill up list box in dialog with numeric columns in worksheet:
formDescribe.checkedListBoxOfColumns.ClearSelected();
int lColumnCount = gMtbApp.ActiveProject.ActiveWorksheet.Columns.Count;

for (int i = 1; i <= lColumnCount; i += 1)
{

// Select only the numeric columns:
if (gMtbApp.ActiveProject.ActiveWorksheet.Columns.Item(i).DataType

== MtbDataTypes.Numeric)
{

formDescribe.checkedListBoxOfColumns.Items.Add(gMtbApp.ActiveProject.ActiveWorksheet.
Columns.Item(i).SynthesizedName);

}
}
// Show the dialog:
dialogResult = formDescribe.ShowDialog();
if (dialogResult == DialogResult.OK)
{

StringBuilder cmnd = new StringBuilder("Describe ");

bool bPrev = false;
for (int i = 0; i <

formDescribe.checkedListBoxOfColumns.CheckedItems.Count; i += 1)
{

if (bPrev)
{

cmnd.Append(" ");
}

cmnd.Append(formDescribe.checkedListBoxOfColumns.CheckedItems[i].ToString());

16

Minitab Statistical Software My Menu

bPrev = true;
}
if (formDescribe.chkMean.Checked)
{

cmnd.Append("; Mean");
}
if (formDescribe.chkVariance.Checked)
{

cmnd.Append("; Variance");
}
if (formDescribe.chkSum.Checked)
{

cmnd.Append("; Sums");
}
if (formDescribe.chkNnonmissing.Checked)
{

cmnd.Append("; N");
}
if (formDescribe.chkHistogram.Checked)
{

cmnd.Append("; GHist");
}
if (formDescribe.chkBoxplot.Checked)
{

cmnd.Append("; GBoxplot");
}
cmnd.Append(".");
command = cmnd.ToString();

}
formDescribe.Close();
break;

case 1:
// Rename active worksheet:
FormRename formRename = new FormRename(ref gMtbApp);
string sCurrent = gMtbApp.ActiveProject.ActiveWorksheet.Name;
formRename.textBoxCurrent.Enabled = true;
formRename.textBoxCurrent.Text = sCurrent;
formRename.textBoxCurrent.Enabled = false;
// Show the dialog:
dialogResult = formRename.ShowDialog();
if (dialogResult == DialogResult.OK)
{

gMtbApp.ActiveProject.ActiveWorksheet.Name =
formRename.textBoxNew.Text;

}
formRename.Close();
break;

case 2:
break;

case 3:
// Open a DOS Window:
string[] fileNamePossibilities = { "cmd.exe", "command.com" };
Process process;
ProcessStartInfo processStartInfo;
foreach (string fileNamePossibility in fileNamePossibilities)
{

process = new Process();
processStartInfo = new ProcessStartInfo();
processStartInfo.UseShellExecute = true;
processStartInfo.FileName = fileNamePossibility;
process.StartInfo = processStartInfo;

17

Minitab Statistical Software My Menu

try
{

process.Start();
break;

}
catch (Exception e)
{

MessageBox.Show(e.Message, "My Menu");
MessageBox.Show("Cannot locate DOS executable or otherwise start

a command prompt…", "My Menu");
continue;

}
}
break;

case 4:
// “Geometric Mean” and “Mean Absolute Difference” (stored in the

worksheet):
FormGeoMean formGeoMean = new FormGeoMean(ref gMtbApp);
// Fill up list box in dialog with numeric columns in worksheet:
lColumnCount = gMtbApp.ActiveProject.ActiveWorksheet.Columns.Count;
Hashtable hashtableOfNumericColumns = new Hashtable();
for (int i = 1; i <= lColumnCount; i += 1)
{

if (gMtbApp.ActiveProject.ActiveWorksheet.Columns.Item(i).DataType
== MtbDataTypes.Numeric)

{
string sSynthesizedColumnName =

gMtbApp.ActiveProject.ActiveWorksheet.Columns.Item(i).SynthesizedName;
string sColumnName =

gMtbApp.ActiveProject.ActiveWorksheet.Columns.Item(i).Name;
// Add column name (if it exists):
if (sColumnName != sSynthesizedColumnName)
{

sSynthesizedColumnName += string.Concat(" ", sColumnName);

}
formGeoMean.comboBox.Items.Add(sSynthesizedColumnName);
hashtableOfNumericColumns.Add(sSynthesizedColumnName,

gMtbApp.ActiveProject.ActiveWorksheet.Columns.Item(i));
}

}
// Show the dialog:
dialogResult = formGeoMean.ShowDialog();
if (dialogResult == DialogResult.OK)
{

// Get data from the column and pass it to the function to do
calculations:

object selectedItem = formGeoMean.comboBox.SelectedItem;
Column mtbDataColumn =

(Column)hashtableOfNumericColumns[selectedItem];
// “FindGeoMean” takes an array of doubles and returns the geometric

mean.
// “bSuccess” indicates if the calculations were completed.
Array daData = (Array)mtbDataColumn.GetData();
bool bSuccess;
object dGeoMean = FindGeoMean(ref daData, out bSuccess);
if (bSuccess)
{

// Find the “Mean Absolute Difference”:
object dMAD = FindMAD(ref daData);
// Store both values in the first available column:

18

Minitab Statistical Software My Menu

Column mtbStorageColumn =
gMtbApp.ActiveProject.ActiveWorksheet.Columns.Add();

mtbStorageColumn.SetData(ref dGeoMean, 1, 1);
mtbStorageColumn.SetData(ref dMAD, 2, 1);
mtbStorageColumn.Name = "MyResults";

}
else
{

// An error occurred:
gMtbApp.ActiveProject.ExecuteCommand("NOTE ** Error ** Cannot

compute statistics…");
}
formGeoMean.Close();

}
break;

default:
break;

}
return command;

}

public void OnNotify(AddinNotifyType eAddinNotifyType)
{

// This method is called when Minitab notifies your add-in
// that something has changed.
// Use the “eAddinNotifyType” parameter to figure out what changed.
// Minitab currently fires no events, so this method is not called.
return;

}

public bool QueryCustomCommand(string sCommand)
{

// This method is called when Minitab asks your Addin if it supports a custom
command.

// The argument “sCommand” is the name of the custom command.
// Return “true” if you support the command.
return sCommand.ToUpper() == "EXPLORER" || sCommand.ToUpper() == "CLEAR";

}

public void ExecuteCustomCommand(string sCommand, ref Array saArgs)
{

// This method is called when Minitab asks your add-in to execute a custom
command.

// The argument “sCommand” is the name of the command, and “saArgs” is an array
of arguments.

if (sCommand.ToUpper() == "EXPLORER")
{

// Open Windows Explorer:
Process process = new Process();
ProcessStartInfo processStartInfo = new ProcessStartInfo();
processStartInfo.UseShellExecute = true;
processStartInfo.FileName = "explorer.exe";
process.StartInfo = processStartInfo;
try
{

process.Start();
}
catch (Exception e)
{

MessageBox.Show(e.Message, "My Menu");
MessageBox.Show("Apparently, Windows Explorer could not be started…",

19

Minitab Statistical Software My Menu

"My Menu");
}

}
else if (sCommand.ToUpper() == "CLEAR")
{

// Clear indicated columns:
int lColumnCount = gMtbApp.ActiveProject.ActiveWorksheet.Columns.Count;
int saArgsCardinality = saArgs.GetLength(saArgs.Rank - 1);
IEnumerator myEnumerator = saArgs.GetEnumerator();
while (myEnumerator.MoveNext())
{

for (int i = 1; i <= lColumnCount; i++)
{

int myEnumeratorCurrent = 0;
int.TryParse(myEnumerator.Current.ToString(), out

myEnumeratorCurrent);
if (gMtbApp.ActiveProject.ActiveWorksheet.Columns.Item(i).Number

== myEnumeratorCurrent)
{

gMtbApp.ActiveProject.ActiveWorksheet.Columns.Item(i).Clear();
}

}
}

}
}

public double FindGeoMean(ref Array saData, out bool bSuccess)
{

// Find geometric mean:
double dSum = 0.0;
int iCount = 0;
bSuccess = true;
foreach (double dValue in saData)
{

if (dValue <= 0)
{

bSuccess = false;
MessageBox.Show("All values must be strictly positive!", "My Menu");
break;

}
dSum += Math.Log(dValue);
iCount += 1;

}

return Math.Exp(dSum / iCount);
}

public double FindMAD(ref Array daData)
{

// Find M(ean) A(bsolute) D(ifference):
double dSum = 0.0;
int iCount = 0;

foreach (double dValue in daData)
{

dSum += dValue;
iCount += 1;

}

double dMAD = 0.0;
double dMean = dSum / iCount;

20

Minitab Statistical Software My Menu

foreach (double dValue in daData)
{

dMAD += Math.Abs(dValue - dMean);
}

dMAD /= iCount;

return dMAD;
}

}
}

21

Minitab Statistical Software My Menu

AMinitab Automation Object Reference

Application object
The Application object serves as the root node in the Minitab automation server object hierarchy. The Application
object is the only object in the hierarchy that can be created by the client. All the lower objects in the hierarchy are
accessed through the Application object or through objects contained within the Application object. The Application
object provides an interface to allow the client to set and get application-wide global properties.

Properties
DescriptionProperty

Returns the currently active project.ActiveProject on page 23

The path to the currently running Minitab executable.AppPath on page 23

The handle to the main Minitab window.Handle on page 23

Holds the last error that occurred during execution of a command.LastError on page 23

Returns the ApplicationOptions object.Options on page 24

Indicates the current status of the Minitab application.Status on page 24

Returns the UserInterface object of the application.UserInterface on page 24

Methods
DescriptionMethod

Use to launch this Help file.Help on page 25

Use to create a new project and make it the active project.New on page 25

Use to open an existing project file and make it the active project.Open on page 25

Use to close and delete all objects in the Application object hierarchy, including
the Application object.

Quit on page 26

Example
Create a Minitab Application object (mtbApp) and make it visible to the user. Then display a message box with the
values of the Status, LastError, AppPath, and Handle properties, as well as the DefaultFilePath property
of the ApplicationOptions object. Finally, change the comment for the active project via the ActiveProject
property.
Mtb.Application mtbApp = new Mtb.Application();
mtbApp.UserInterface.Visible = true;

MessageBox.Show("Status = " + mtbApp.Status + "\r\n" +
"LastError = " + mtbApp.LastError + "\r\n" +
"Default File Path = " + mtbApp.Options.DefaultFilePath + "\r\n" +
"Application Path = " + mtbApp.AppPath + "\r\n" +
"Window Handle = " + mtbApp.Handle);

mtbApp.ActiveProject.Comment = "New Minitab Project.";

22

Minitab Statistical Software Minitab Automation Object Reference

Application property - ActiveProject
Description

Returns the currently active project.

Type
Project

Range
N/A

Access
Read-only

Application property - AppPath
Description

The path to the currently running Minitab executable.

Type
String

Range
Valid string

Access
Read-only

Application property - Handle
Description

The handle to the main Minitab window.

Type
Long

Range
Any valid long integer

Access
Read-only

Application property - LastError
Description

Holds the last error that occurred during execution of a command.

Type
String

23

Minitab Statistical Software Minitab Automation Object Reference

Range
Valid string

Access
Read-only

After executing an asynchronous command, the Status property should be checked to see when the command
completes. If the Status property indicates an error occurred then use the LastError property to retrieve the error
message. For more information on the Status property, go to Application property - Status on page 24.

Application property - Options
Description

Returns the ApplicationOptions object.

Type
ApplicationOptions on page 26

Range
N/A

Access
Read-only

Application property - Status
Description

Indicates the current status of the Minitab application.

Type
MtbAppStatusTypes on page 6

Range
Any MtbAppStatusTypes constant

Access
Read-only

After executing an asynchronous command, the Status property should be checked to see when the command
completes. If the Status property indicates an error occurred then use the LastError property to retrieve the error
message. For more information on the LastError property, go to Application property - LastError on page 23.

Application property - UserInterface
Description

Returns the UserInterface object of the application.

Type
UserInterface on page 29

Range
N/A

24

Minitab Statistical Software Minitab Automation Object Reference

Access
Read-only

Application method - Help
Use to launch this Help file.

Syntax
Help()

Returns
HRESULT

Example
Call the online Help file.
Mtb.Application mtbApp = new Mtb.Application();

mtbApp.Help();

Application method - New
Use to create a new project and make it the active project.

Syntax
New()

Returns
HRESULT

Example
Create a new project and make it the active project.
Mtb.Application mtbApp = new Mtb.Application();

mtbApp.New();

Application method - Open
Use to open an existing project file and make it the active project.

Syntax
Open(Filename as String)

25

Minitab Statistical Software Minitab Automation Object Reference

Arguments

Filename
Required. The path and name of the project file to be opened. If a path is not specified, the DefaultFilePath is
used. For more information on the DefaultFilePath, go to ApplicationOptions property - DefaultFilePath on page
28.

Returns
HRESULT

Example
Open an existing project file and make it the active project.
Mtb.Application mtbApp = new Mtb.Application();

mtbApp.Open("C:\\MyProject.mpj");

Application method - Quit
Use to close and delete all objects in the Application object hierarchy, including the Application object.

Syntax
Quit()

Returns
HRESULT

Example
Delete all the objects in the Application Object hierarchy, including the mtbApp.
Mtb.Application mtbApp = new Mtb.Application();

mtbApp.Quit();

ApplicationOptions object
Use the ApplicationOptions object to read or set options that pertain to the Application object. Use the Options
property of the Application object to access ApplicationOptions. For more information on the Application
object, go to Application object on page 22.

Properties
DescriptionProperty

Date/time to use to represent missing date/time values when receiving date/time
values from a client or giving date/time values to a client.

ClientMissingValueDateTime on
page 27

26

Minitab Statistical Software Minitab Automation Object Reference

DescriptionProperty

Number to use to represent missing numeric values when receiving numeric data
from a client or giving numeric data to a client.

ClientMissingValueNumeric on
page 28

Default file path used by the application for opening/saving files.DefaultFilePath on page 28

Returns or sets the default type of output document file that will be produced.DefaultOutputFileType on page
29

Example
Create a Minitab Application object (mtbApp), then use the ApplicationOptions object to access and display the
DefaultFilePath in amessage box. Formore information on the ApplicationOptions object, go to ApplicationOptions
object on page 26.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.ApplicationOptions mtbAppOpt = mtbApp.Options;

MessageBox.Show("The current default file path is " + mtbAppOpt.DefaultFilePath);

ApplicationOptions property - ClientMissingValueDateTime
Description

Date/time to use to represent missing date/time values when receiving date/time values from a client or giving
date/time values to a client.

Type
Date

Range
Valid COM DATE value

Default
12/31/9999

Access
Read/Write

This property does not affect Minitab's convention that uses "*" to represent missing values; therefore, in the Minitab
worksheet missing values will always appear as "*".

Example
Set the ClientMissingValueDateTime to June1, 2018 for a Minitab Application object, then display it in a message
box.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.ApplicationOptions mtbAppOpt = mtbApp.Options;

DateTime missingDate = new DateTime(2018, 6, 1);
mtbAppOpt.ClientMissingValueDateTime = missingDate;

MessageBox.Show("The ClientMissingValueDateTime is " +
mtbAppOpt.ClientMissingValueDateTime);

27

Minitab Statistical Software Minitab Automation Object Reference

ApplicationOptions property - ClientMissingValueNumeric
Description

Number to use to represent missing numeric values when receiving numeric data from a client or giving numeric
data to a client.

Type
Double

Range
Valid double precision value

Default
1.23456E30

Access
Read/Write

This property does not affect Minitab's convention that uses "*" to represent missing values; therefore, in the Minitab
worksheet missing numeric values will always appear as "*".

Example
Set the ClientMissingValueNumeric to 0.001 for a Minitab Application object, then display it in a message box.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.ApplicationOptions mtbAppOpt = mtbApp.Options;

mtbAppOpt.ClientMissingValueNumeric = 0.001;
MessageBox.Show("The ClientMissingValueNumeric is " +
mtbAppOpt.ClientMissingValueNumeric);

ApplicationOptions property - DefaultFilePath
Description

Default file path used by the application for opening/saving files.

Type
String

Range
Any valid path

Access
Read/Write

The default DefaultFilePath is the directory where the task scheduler will schedule the task to execute.

Example
Create a Minitab Application object (mtbApp), then use the ApplicationOptions object to access and display the
DefaultFilePath in amessage box. Formore information on the ApplicationOptions object, go to ApplicationOptions
object on page 26.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.ApplicationOptions mtbAppOpt = mtbApp.Options;

MessageBox.Show("The current default file path is " + mtbAppOpt.DefaultFilePath);

28

Minitab Statistical Software Minitab Automation Object Reference

ApplicationOptions property - DefaultOutputFileType
Description

Returns or sets the default type of output document file that will be produced.

Type
MtbOutputFileTypes on page 7

Range
Any MtbOutputFileTypes constant

Access
Read/Write

The default is HTML.

Example
Create a Minitab Application object (mtbApp) and then display the DefaultOutputFileType in a message box.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.ApplicationOptions mtbAppOpt = mtbApp.Options;

MessageBox.Show("The current default output file type is " +
mtbAppOpt.DefaultOutputFileType);

UserInterface object
The UserInterface object allows control of the Minitab host.

Properties
DescriptionProperty

Controls whetherMinitab displays alerts andmessages while a client script is running.DisplayAlerts on page 30

Controls whether the user is able to issue commands or alter data directly in Minitab
if it is visible.

Interactive on page 30

Controls whether Minitab quits when the last client object is released.UserControl on page 30

Controls whether Minitab server is visible.Visible on page 30

Example
Create a Minitab Application object (mtbApp), make it visible to the user, and set the Interactive, UserControl,
and DisplayAlerts properties of the UserInterface object to True.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.UserInterface mtbUI = mtbApp.UserInterface;

mtbUI.Visible = true;
mtbUI.Interactive = true;
mtbUI.UserControl = true;
mtbUI.DisplayAlerts = true;

29

Minitab Statistical Software Minitab Automation Object Reference

UserInterface property - DisplayAlerts
Description

Controls whether Minitab displays alerts and messages while a client script is running.

Type
Boolean

Range
True/False

Access
Read/Write

It is good practice to set DisplayAlerts back to True when a script finishes. Minitab does not do this automatically.

UserInterface property - Interactive
Description

Controls whether the user is able to issue commands or alter data directly in Minitab if it is visible.

Type
Boolean

Range
True/False

Access
Read/Write

The default is True.

UserInterface property - UserControl
Description

Controls whether Minitab quits when the last client object is released.

Type
Boolean

Range
True/False

Access
Read/Write

The default is False if the application was started programmatically. Minitab must be visible for UserControl to
be True.

UserInterface property - Visible
Description

Controls whether Minitab server is visible.

30

Minitab Statistical Software Minitab Automation Object Reference

Type
Boolean

Range
True/False

Access
Read/Write

The default is True when Minitab is started by the user, False when started programmatically.

Project object
The Project object contains all the information related to an individual project, including the Worksheets collection
and the Commands collection.

For more information on the Worksheets collection, go to Worksheets Collection object on page 40. For more
information on the Commands collection, go to Commands Collection object on page 83.

Properties
DescriptionProperty

Returns or sets the active worksheet for the project.ActiveWorksheet on page 32

Returns the Commands collection for the project.Commands on page 33

Comment for the project.Comment on page 33

Creator of the project.Creator on page 33

Date of the project.Date on page 34

Full name of the Project object disk file, including the path name and/or drive
name, set when a project is opened or saved.

FullName on page 34

Name of the project and its disk file.Name on page 35

Path of the Project object disk file, set when a project is opened or savedPath on page 35

Returns the Worksheets collection of the project.Worksheets on page 36

Methods
DescriptionMethod

Use to cancel the execution of a user-issued or COM-issued command.CancelCommand on page 36

Use to delete the Project object and the underlying Worksheets and Commands
collections.

Delete on page 36

Use to run a Minitab session command and create a command object.ExecuteCommand on page 37

Use to run a Minitab session command asynchronously and create a command
object.

ExecuteCommandAsync on page
37

Use to save the project to FullName.Save on page 38

Use to save a copy of the project.SaveAs on page 38

31

Minitab Statistical Software Minitab Automation Object Reference

Example
Create a Minitab Application object, execute Minitab commands both synchronously and asynchronously, and then
attempt to cancel the asynchronous command. Also use the Comment, Creator, and Date properties as well as the
Save and SaveAs methods.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj = mtbApp.ActiveProject;
Mtb.MtbAppStatusTypes status;

mtbProj.ExecuteCommand("rand 30 c1");
mtbProj.ExecuteCommandAsync("rand 100000 c2-c100");

status = mtbApp.Status;
if (status == Mtb.MtbAppStatusTypes.ASBusy)
{

mtbProj.CancelCommand();
}

mtbApp.UserInterface.Visible = true;

Save the project as a Release 19 project called MyProject. For Minitab 19 and higher, 19 is the earliest valid argument.
mtbProj.SaveAs("C:\\MyProject",true,19);

Add creator, date, and comment information.
mtbProj.Creator = "Me";
mtbProj.Date = DateTime.Now.ToShortDateString();
mtbProj.Comment = "This is my project.";

Display creator, date, and comment information.
MessageBox.Show("This project created by " + mtbProj.Creator +

" on " + mtbProj.Date + "\r\nComment: " + mtbProj.Comment);

Save the project again.
mtbProj.Save();

Project property - ActiveWorksheet
Description

Returns or sets the active worksheet for the project.

Type
Worksheet on page 44

Range
N/A

Access
Read/Write

Example
Create a Minitab Application object, then rename the project's active worksheet and display a message with the
new name. For more information on the Application object, go to Application object on page 22.
Mtb.Application mtbApp;
Mtb.Worksheet mtbSheet;

mtbApp = new Mtb.Application();
mtbSheet = mtbApp.ActiveProject.ActiveWorksheet;

32

Minitab Statistical Software Minitab Automation Object Reference

mtbSheet.Name = "My Worksheet";
MessageBox.Show("The active worksheet is called " +
mtbApp.ActiveProject.ActiveWorksheet.Name);

Project property - Commands
Description

Returns the Commands collection for the project. For more information on the Commands collection, go to
Commands Collection object on page 83.

Type
Commands collection

Range
N/A

Access
Read-only

Example
Retrieve the Commands collection from the Project object and display a message with the number of commands
in the collection.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj = mtbApp.ActiveProject;
Mtb.Commands mtbCommands = mtbProj.Commands;

MessageBox.Show("The number of commands that has been run is: " +
mtbCommands.Count.ToString());

Project property - Comment
Description

Comment for the project.

Type
String

Range
Valid string

Access
Read/Write

Default is blank.

Project property - Creator
Description

Creator of the project.

Type
String

33

Minitab Statistical Software Minitab Automation Object Reference

Range
Valid string

Access
Read/Write

Default is blank.

Project property - Date
Description

Date of the project.

Type
String

Range
Valid string

Access
Read/Write

Default is blank

Project property - FullName
Description

Full name of the Project object disk file, including the path name and/or drive name, set when a project is
opened or saved.

Type
String

Range
Valid file name, including the path name and/or drive name

Access
Read-only

Example
Display the FullName property (path and name) of the project in a message box.
Mtb.Application mtbApp;
Mtb.Project mtbProj;

mtbApp = new Mtb.Application();
mtbProj = mtbApp.ActiveProject;

mtbProj.Name = "My Project";
MessageBox.Show("The FullName is " + mtbProj.FullName);

34

Minitab Statistical Software Minitab Automation Object Reference

Project property - Name
Description

Name of the project and its disk file. It also is the name of the file if the project is saved to disk. Setting the Name
property automatically updates the file name portion of the FullName property.

Type
String

Range
Any valid file name

Access
Read/Write

Do not include the path when setting the Name property.

Example
Retrieve the active project, name it "My Project," and print the name in a message box.
Mtb.Application mtbApp;
Mtb.Project mtbProj;

mtbApp = new Mtb.Application();
mtbProj = mtbApp.ActiveProject;

mtbProj.Name = "My Project";
MessageBox.Show("The project is " + mtbProj.Name);

Project property - Path
Description

Path of the Project object disk file, set when a project is opened or saved

Type
String

Range
Valid path name. It may include the drive name.

Access
Read-only

Example
Display the Path property of the project in a message box.
Mtb.Application mtbApp;
Mtb.Project mtbProj;

mtbApp = new Mtb.Application();
mtbProj = mtbApp.ActiveProject;

MessageBox.Show("The path is " + mtbProj.Path);

35

Minitab Statistical Software Minitab Automation Object Reference

Project property - Worksheets
Description

Returns the Worksheets collection of the project. For more information on the Worksheets collection, go to
Worksheets Collection object on page 40.

Type
Worksheets collection

Range
N/A

Access
Read-only

Example
Retrieve the Worksheets collection from the Project object and display a message with the number of worksheets
in the collection.
Mtb.Application mtbApp;
Mtb.Project mtbProj;
Mtb.Worksheets mtbSheets;

mtbApp = new Mtb.Application();
mtbProj = mtbApp.ActiveProject;
mtbSheets = mtbProj.Worksheets;

MessageBox.Show("There are this many worksheets in the project: " + mtbSheets.Count);

Project method - CancelCommand
Use to cancel the execution of a user-issued or COM-issued command.

Syntax
CancelCommand()

Returns
Boolean

Remarks
Returns True if the command was cancelled, False if no command was executing.

Project method - Delete
Use to delete the Project object and the underlying Worksheets and Commands collections. Delete also sets the
active project for the application to NULL.

For more information on the Worksheets collection, go to Worksheets Collection object on page 40. For more
information on the Commands collection, go to Commands Collection object on page 83.

36

Minitab Statistical Software Minitab Automation Object Reference

Syntax
Delete()

Returns
HRESULT

Example
Delete the Project object and the underlying Worksheets and Commands collections.
Mtb.Application mtbApp;
Mtb.Project mtbProj;

mtbApp = new Mtb.Application();
mtbProj = mtbApp.ActiveProject;

mtbProj.Delete();

Project method - ExecuteCommand
Use to run a Minitab session command and create a command object.

Syntax
ExecuteCommand(Command as String, WorksheetObj as Worksheet)

Arguments

Command
Required. One or more session commands to execute in Minitab. Multiple commands and subcommands may
be included in the same command. Subcommands must be separated from commands and from each other by
semicolons. Each command must end with a period, with the exception of LET. LET commands must be separated
from other commands by a new line rather than a period.

WorksheetObj
Optional. The worksheet to use when executing the command. The specified worksheet becomes the
ActiveWorksheet. If none specified, then the current ActiveWorksheet is used.

Remarks
The command is executed synchronously, meaning this interface will not return until the command has completed
executing, giving direct feedback as to the completion status of the command, success or failure.

Project method - ExecuteCommandAsync
Use to run a Minitab session command asynchronously and create a command object.

Syntax
ExecuteCommandAsync(Command as String, WorksheetObj as Worksheet)

37

Minitab Statistical Software Minitab Automation Object Reference

Arguments

Command
Required. One or more session commands to execute in Minitab. Multiple commands and subcommands may
be included in the same command. Subcommands must be separated from commands and from each other by
semicolons. Each command must end with a period, with the exception of LET. LET commands must be separated
from other commands by a new line rather than a period.

WorksheetObj
Optional. The worksheet to use when executing the command. The specified worksheet becomes the
ActiveWorksheet. If none specified, then the current ActiveWorksheet is used.

Returns
HRESULT

Remarks
The command is submitted for execution asynchronously, meaning this interface will return before the command is
executed. Use the Application object's Status property to see if the command completed successfully. If an error
occurred, use the application's LastError property to retrieve the error message.

For more information on the Application object, go to Application object on page 22. For more information on
the Status property, go to Application property - Status on page 24. For more information on the LastError
property, go to Application property - LastError on page 23.

Project method - Save
Use to save the project to FullName.

For more information on FullName, go to Project property - FullName on page 34.

Syntax
Save()

Returns
HRESULT

Project method - SaveAs
Use to save a copy of the project.

Syntax
SaveAs(Filename as String, Replace as Boolean, Version as Long)

38

Minitab Statistical Software Minitab Automation Object Reference

Arguments

Filename
Optional. Path and file name to use when saving the project. If a path is not specified, then the DefaultFilePath
is used. If a file name is not specified then the Name property is used.

Replace
Optional. If True, an existing file with the same name will be overwritten. The default is True.

Version
Optional. The Minitab version number to save the project as. If not specified, the current version number is used.

For more information on the DefaultFilePath, go to ApplicationOptions property - DefaultFilePath on page 28.
For more information on the Name property, go to Project property - Name on page 35.

Returns
HRESULT

39

Minitab Statistical Software Minitab Automation Object Reference

B Worksheet Object Reference

Worksheets Collection object
TheWorksheets collection is a set of all theWorksheet objects within a Project object. It supports the standard collection
properties and methods.

Properties
DescriptionProperty

Number of Worksheet objects within the Worksheets collection.Count on page 40

Methods
DescriptionMethod

Use to add Count Worksheet objects to the Worksheets collection.Add on page 41

Use to remove all Worksheet objects from the Worksheets collection.Delete on page 41

Use to return a Worksheet object within the Worksheets collection.Item on page 42

Use to open an existingMinitab worksheet disk file, read it into a Worksheet object,
and add the Worksheet object to the end of the Worksheets collection.

Open on page 42

Use to delete a Worksheet object and remove it from the Worksheets collection.Remove on page 43

Example
Retrieve the Worksheets collection from the Project, add two worksheets to it and name the first one "First Year," open
an existing Minitab worksheet ("Market"), then remove the second worksheet from the Worksheets collection:
Mtb.Worksheets mtbSheets;
mtbSheets = mtbProj.Worksheets;

mtbSheets.Add(2).Name = "First Year";
mtbSheets.Open("Market");
mtbSheets.Remove(2);

Note This example assumes that the MtbProject object was previously initialized to a valid Project object as demonstrated in the
Project object example.

Worksheets Collection property - Count
Description

Number of Worksheet objects within the Worksheets collection.

Type
Long

Range
0 - number of Worksheet objects within the Worksheets collection

40

Minitab Statistical Software Worksheet Object Reference

Access
Read-only

Example
Retrieve the Worksheets collection from a previously initialized Project object, then display the number of Worksheet
objects in the Worksheets collection in a message box.
mtbSheets = mtbProj.Worksheets;

MessageBox.Show(mtbSheets.Count.ToString());

Worksheets Collection method - Add
Use to add Count Worksheet objects to the Worksheets collection.

Syntax
Add(Quantity Long String)

Arguments

Quantity
Optional. Number of worksheets to add. The default is 1.

Returns
Worksheet

Remarks
The first worksheet added is returned.

Examples
Retrieve the Worksheets collection, add two worksheets to it, naming the first one "Growth."
mtbSheets = mtbProj.Worksheets;
mtbSheets.Add(2).Name = "Growth";

Add one worksheet to the Worksheets collection.
mtbSheets.Add();

Worksheets Collection method - Delete
Use to remove all Worksheet objects from the Worksheets collection.

For more information on the Worksheet object, go to Worksheet object on page 44.

Syntax
Delete()

41

Minitab Statistical Software Worksheet Object Reference

Returns
HRESULT

Remarks
To remove a single worksheet, use Remove or the Worksheet object method, Delete.

For more information on the Remove method for the Worksheets collection, go to Worksheets Collection method
- Remove on page 43. For more information on the Deletemethod for a worksheet object, go to Worksheet method
- Delete on page 49.

Example
Delete the Worksheets collection, including all its worksheets:
mtbSheets.Delete();

Worksheets Collection method - Item
Use to return a Worksheet object within the Worksheets collection.

Syntax
Item(Index as Variant)

Arguments

Index
Required. The index of the worksheet as an integer (Long) from 1 - the number of worksheets in the collection,
or the name (String) of the worksheet. For more information on the name property of the worksheet, go to
Worksheet property - Name on page 48.

Returns
Worksheet

Examples
Retrieve the second worksheet in the Worksheets collection, name the worksheet "First Year," then print the name in
a message box.
mtbSheet = mtbSheets.Item(2);
mtbSheet.Name = "First Year";
MessageBox.Show("The second worksheet is " + mtbSheet.Name);

Retrieve the worksheet called "Second Year" and print the name in a message box.
mtbSheet = mtbSheets.Item("Second Year");
MessageBox.Show("The current worksheet is: " + mtbSheet.Name);

Worksheets Collection method - Open
Use to open an existing Minitab worksheet disk file, read it into a Worksheet object, and add the Worksheet object
to the end of the Worksheets collection.

42

Minitab Statistical Software Worksheet Object Reference

Syntax
Open(Filename as String)

Arguments

Filename
Optional. The path and name of the worksheet file to be opened. If a path is not specified, the DefaultFilePath
is used. For more information on the DefaultFilePath, go to ApplicationOptions property - DefaultFilePath on
page 28.

Returns
HRESULT

Remarks
When you open a worksheet file, the Name, Path, and FullName properties of the Worksheet object are automatically
updated. If you don't specify an extension, .MWX is automatically added.

Example
Open the Minitab worksheet "Market.mtw", retrieve the first worksheet, then print the name in a message box.
mtbSheets.Open("C:\\sheets\\Market.mtw");
mtbSheet = mtbSheets.Item(1);
MessageBox.Show("Worksheet name: " + mtbSheet.Name);

Worksheets Collection method - Remove
Use to delete a Worksheet object and remove it from the Worksheets collection.

Syntax
Remove(Index as Variant)

Arguments

Index
Required. The index of the worksheet as an integer (Long) from 1 - the number of worksheets in the collection,
or the name on page 48 (String) of the worksheet.

Returns
HRESULT

Remarks
The same results can be achieved using the Deletemethod of the Worksheet object. To remove all worksheets, use
the Delete method of the Worksheets collection object.

43

Minitab Statistical Software Worksheet Object Reference

For more information on the Delete method for a Worksheet object, go to Worksheet method - Delete on page
49. For more information on the Worksheet object, go to Worksheet object on page 44. For more information on
the Deletemethod of the Worksheets collection object, go to Worksheets Collection method - Delete on page 41.
For more information on the Worksheets collection object, go to Worksheets Collection object on page 40.

Example
Remove the first worksheet and the worksheet named "First Year" from the Worksheets collection.
mtbSheets.Remove(1);
mtbSheets.Remove("First Year");

Worksheet object
The Worksheet object contains all the information related to an individual worksheet, including the Columns,
Constants, and Matrices collections, which provide access to all the columns, constants, and matrices in the
worksheet.

Properties
DescriptionProperty

Returns the Columns collection of the worksheet.Columns on page 45

Comment for the Worksheet object, saved as part of the Minitab worksheet
description.

Comment on page 45

Returns the Constants collection of the worksheet.Constants on page 46

Creator of the Worksheet object, saved as part of theMinitab worksheet description.Creator on page 46

Date of the Worksheet object description, saved as part of the Minitab worksheet
description.

Date on page 46

Full name of the Worksheet object disk file, including the path name and/or drive
name, set when a Worksheet object is opened or saved.

FullName on page 47

Returns the Matrices collection of the worksheet.Matrices on page 47

Name of the Worksheet object and its disk file.Name on page 48

Path of the Worksheet object disk file, set when a Worksheet object is opened
or saved.

Path on page 48

Methods
DescriptionMethod

Use to delete a Worksheet object and remove it from the Worksheets collection.Delete on page 49

Use to save a Worksheet object to disk with the file name specified in the FullName
property.

Save on page 49

Use to save a Worksheet object to disk with the file name specified in the Filename
argument.

SaveAs on page 50

44

Minitab Statistical Software Worksheet Object Reference

Example
Retrieve the Worksheet object named "First Year", set the creator, date, and comment for the worksheet, then save
the worksheet as "Year1."
Mtb.Worksheet mtbSheet;
mtbSheet = mtbSheets.Item("First Year");
mtbSheet.Creator = "M. Smith";
mtbSheet.Date = "6/4/2002";
mtbSheet.Comment = "1999 is the first year";
mtbSheet.SaveAs("Year1");

Worksheet property - Columns
Description

Returns the Columns collection of the worksheet.

Type
Columns on page 50

Range
N/A

Access
Read-only

Example
Retrieve the Columns collection.
mtbColumns = mtbSheet.Columns;

Note This example assumes that the mtbSheet object was previously initialized to a valid Worksheet object as demonstrated in the
Worksheet object example. For the example, go to Worksheet object on page 44.

Worksheet property - Comment
Description

Comment for the Worksheet object, saved as part of the Minitab worksheet description.

Type
String

Range
Valid string

Access
Read/Write

Example
Retrieve the first worksheet in the Worksheets collection and add a comment to the worksheet.
mtbSheet = mtbSheets.Item(1);
mtbSheet.Comment = "This worksheet has the old data. It needs to be updated by the end
of the year.";

45

Minitab Statistical Software Worksheet Object Reference

Worksheet property - Constants
Description

Returns the Constants collection of the worksheet.

Type
Constants on page 64

Range
N/A

Access
Read-only

Example
Set mtbConstants to the Constants collection of worksheet mtbSheet.
mtbConstants = mtbSheet.Constants;

Note This example assumes that the mtbSheet object was previously initialized to a valid Worksheet object as demonstrated in the
Worksheet object example. For the example, go to Worksheet object on page 44.

Worksheet property - Creator
Description

Creator of the Worksheet object, saved as part of the Minitab worksheet description.

Type
String

Range
Valid string

Access
Read/Write

Example
Retrieve the first worksheet in the Worksheets collection, specify the creator of the worksheet (M. Smith), then print
the creator in a message box.
mtbSheet = mtbSheets.Item(1);
mtbSheet.Creator = "M. Smith";
MessageBox.Show("The creator is " + mtbSheet.Creator);

Worksheet property - Date
Description

Date of the Worksheet object description, saved as part of the Minitab worksheet description.

Type
String

46

Minitab Statistical Software Worksheet Object Reference

Range
Valid string

Access
Read/Write

Example
Retrieve the first worksheet in the Worksheets collection, specify the date of the worksheet, then print the date in a
message box.
mtbSheet = mtbSheets.Item(1);
mtbSheet.Date = "6/4/2018";
MessageBox.Show("The date is " + mtbSheet.Date);

Worksheet property - FullName
Description

Full name of the Worksheet object disk file, including the path name and/or drive name, set when a Worksheet
object is opened or saved.

Type
String

Range
Valid file name, including path name and/or drive name

Access
Read/Write

Example
Display the FullName property (path and name) of the worksheet in a message box.
MessageBox.Show("The FullName is " + mtbSheet.FullName);

Worksheet property - Matrices
Description

Returns the Matrices collection of the worksheet.

Type
Matrices on page 73

Range
N/A

Access
Read-only

47

Minitab Statistical Software Worksheet Object Reference

Example
Set mtbMatrices to the Matrices collection of worksheet mtbSheet.
mtbMatrices = mtbSheet.Matrices;

Note This example assumes that the mtbSheet object was previously initialized to a valid Worksheet object as demonstrated in the
Worksheet object example. For the example, go to Worksheet object on page 44.

Worksheet property - Name
Description

Name of the Worksheet object and its disk file. It is also the name of the file if the Worksheet object is saved
to disk. Setting Name automatically updates the file name portion of the FullName property.

Type
String

Range
Any valid file name

Access
Read/Write

Do not include the path when setting Name.

Example
Retrieve the second worksheet in the Worksheets collection, name the worksheet "Second Year," then print the name
in a message box.
mtbSheet = mtbSheets.Item(2);
mtbSheet.Name = "Second Year";
MessageBox.Show("The second worksheet is " + mtbSheet.Name);

Worksheet property - Path
Description

Path of the Worksheet object disk file, set when a Worksheet object is opened or saved.

Type
String

Range
Valid path name. It may include the drive name.

Access
Read-only

Example
Display the Path property of the worksheet in a message box.
MessageBox.Show("The Path is " + mtbSheet.Path);

48

Minitab Statistical Software Worksheet Object Reference

Worksheet method - Delete
Use to delete a Worksheet object and remove it from the Worksheets collection.

Syntax
Delete()

Returns
HRESULT

Remarks
The same results can be achieved using the Remove method of the Worksheets collection object. To remove all
worksheets, use the Delete method of the Worksheets collection object.

For more information on the Remove method for a Worksheets collection object, go to Worksheets Collection
method - Remove on page 43. For more information on the Delete method of the Worksheets collection object,
go toWorksheets Collectionmethod - Delete on page 41. For more information on the Worksheets collection object,
go to Worksheets Collection object on page 40.

Example
Delete the Worksheet object from the Worksheets collection.
mtbSheet.Delete();

Worksheet method - Save
Use to save a Worksheet object to disk with the file name specified in the FullName property.

Syntax
Save(Filename as String)

Returns
HRESULT

Remarks
When you save a worksheet, the Name, Path, and FullName properties of the Worksheet object are automatically
updated. If you don't specify an extension, .MWX is automatically added to the worksheet name. If the FullName
property is null, then the worksheet is saved to Minitab.MWX at the default file path.

Example
Save the current worksheet.
mtbSheet.Save();

49

Minitab Statistical Software Worksheet Object Reference

Worksheet method - SaveAs
Use to save a Worksheet object to disk with the file name specified in the Filename argument.

Syntax
SaveAs(Filename as String, Replace as Boolean, Version as Long)

Arguments

Filename
Optional. Path and file name to use when saving the file. If a path is not specified, then the DefaultFilePath
is used. For more information on the DefaultFilePath, go to ApplicationOptions property - DefaultFilePath on
page 28.

Replace
Optional. If True, an existing file with the same name will be overwritten. The default is False.

Version
Optional. The Minitab version number to save the worksheet as. Valid parameters are 19 or later.

Returns
HRESULT

Remarks
When you save a worksheet, the Name, Path, and FullName properties of the Worksheet object are automatically
updated. With the release of Minitab 19 and tabbed output, if you don't specify an extension, .MWX is automatically
added to the worksheet name. Earlier versions of Minitab use .MTW. You cannot save worksheets as .MTW files in
versions of Minitab that do not support tabbed output.

Examples
Save the current worksheet as "April Totals" at the file path C:\MTBsheets.
mtbSheet.SaveAs("C:\\MTBsheets\\April Totals");

Save the current worksheet as "April Totals" at the default file path, overwriting the existing "April Totals".
mtbSheet.SaveAs("April Totals",true);

Columns Collection object
The Columns collection is a set of all the Column objects within aWorksheet object. It supports the standard collection
properties and methods.

The Columns collection for a worksheet is empty by default.

50

Minitab Statistical Software Worksheet Object Reference

Properties
DescriptionProperty

Number of Column objects within the Columns collection.Count on page 51

Methods
DescriptionMethod

Use to add Quantity Column objects to the Columns collection in the position
before Before or after After.

Add on page 52

Use to remove all Column objects from the Columns collection.Delete on page 53

Use to return a Column object within the Columns collection.Item on page 53

Use to delete a Column object and remove it from the Columns collection.Remove on page 54

Example
Retrieve the Columns collection (mtbColumns), add two columns to the end of the collection and name the first one
"Sales," then remove the second column from the Columns collection.
Mtb.Application mtbApp;
Mtb.Worksheet mtbSheet;
Mtb.Columns mtbColumns;

mtbApp = new Mtb.Application();
mtbSheet = mtbApp.ActiveProject.ActiveWorksheet;
mtbColumns = mtbSheet.Columns;

mtbApp.UserInterface.Visible = true;
mtbApp.UserInterface.UserControl = true;

mtbColumns.Add(null,null,2).Name = "Sales";
mtbColumns.Remove(2);

Columns Collection property - Count
Description

Number of Column objects within the Columns collection.

Type
Long

Range
0 - number of Column objects within the Columns collection

Access
Read-only

Example
Retrieve the Columns collection, then display in a message box the number of Column objects in the Columns
collection.
Mtb.Application mtbApp;
Mtb.Worksheet mtbSheet;

51

Minitab Statistical Software Worksheet Object Reference

Mtb.Columns mtbColumns;
Mtb.Column mtbColumn;

mtbApp = new Mtb.Application();
mtbSheet = mtbApp.ActiveProject.ActiveWorksheet;
mtbColumns = mtbSheet.Columns;

MessageBox.Show(mtbColumns.Count.ToString());

Columns Collection method - Add
Use to add Quantity Column objects to the Columns collection in the position before Before or after After.

Syntax
Add(Before as Variant, After as Variant, Quantity as Long)

Arguments

Before
Optional. Column object to add new columns before.

After
Optional. Column object to add new columns after.

Quantity
Optional. Number of columns to add. The default is 1.

Returns
Column on page 55

Remarks
You can specify either Before or After, but not both. Use an integer (Long) from 1 - the number of columns in the
collection, or the name(String) of a column. If neither Before nor After is specified, then the columns are added
after the last column in the collection. For more information on the Name property, go to Column property - Name
on page 59.

The first column added is returned.

Examples
Create a Minitab Application object, add four columns to the active worksheet, and name the first column "Year."
Mtb.Application mtbApp;
Mtb.Worksheet mtbSheet;
Mtb.Columns mtbColumns;
Mtb.Column mtbColumn;

mtbApp = new Mtb.Application();
mtbSheet = mtbApp.ActiveProject.ActiveWorksheet;
mtbColumns = mtbSheet.Columns;

mtbColumns.Add(null, null, 4).Name = "Year";

52

Minitab Statistical Software Worksheet Object Reference

Add one column to it after the last column.
mtbColumns.Add();

Add two columns to the Columns collection before column three, and name the first column "First Time."
mtbColumns.Add(3, null, 2).Name = "First Time";

Add two columns to the Columns collection after column three.
mtbColumns.Add(null, 3, 2);

Add four columns to the Columns collection before the "Year" column and name the first column "Next Year."
mtbColumns.Add("Year", null, 4).Name = "Next Year";

Add two columns to the Columns collection after the "Year" column.
mtbColumns.Add(null, "Year", 2);

Columns Collection method - Delete
Use to remove all Column objects from the Columns collection.

Syntax
Delete()

Returns
HRESULT

Remarks
To remove a single column, use Remove on page 54 or the Column object method, Delete on page 60.

Example
Delete the Columns collection (MtbColumns), including all its columns.
Mtb.Application mtbApp;
Mtb.Worksheet mtbSheet;
Mtb.Columns mtbColumns;

mtbApp = new Mtb.Application();
mtbSheet = mtbApp.ActiveProject.ActiveWorksheet;
mtbColumns = mtbSheet.Columns;

mtbColumns.Delete();

Columns Collection method - Item
Use to return a Column object within the Columns collection.

Syntax
Item(Index as Variant)

53

Minitab Statistical Software Worksheet Object Reference

Arguments

Index
Required. The index of the column as an integer (Long) from 1 - the number of columns in the collection, or the
name on page 48 (String) of the column.

Returns
Column on page 55

Examples
Create aMinitab Application object, add four columns to the active worksheet, and name the first column "Mileage."
Mtb.Application mtbApp;
Mtb.Worksheet mtbSheet;
Mtb.Columns mtbColumns;
Mtb.Column mtbColumn;

mtbApp = new Mtb.Application();
mtbSheet = mtbApp.ActiveProject.ActiveWorksheet;
mtbColumns = mtbSheet.Columns;

mtbColumns.Add(null, null, 4).Name = "Mileage";

Retrieve the second column in the Columns collection, name the column "Range," then print the name in a message
box.
mtbColumn = mtbColumns.Item(2);
mtbColumn.Name = "Range";
MessageBox.Show("The second column is " + mtbColumn.Name);

Retrieve the column called "Mileage" then print the name in a message box.
mtbColumn = mtbColumns.Item("Mileage");
MessageBox.Show("The current column is " + mtbColumn.Name);

Columns Collection method - Remove
Use to delete a Column object and remove it from the Columns collection.

Syntax
Remove(Index as Variant)

Arguments

Index
Required. The index of the column as an integer (Long) from 1 - the number of columns in the collection, or the
name(String) of the column. For more information on the Name property, go to Column property - Name on
page 59.

Returns
HRESULT

54

Minitab Statistical Software Worksheet Object Reference

Remarks
The same results can be achieved using the Delete method of the Column object. To remove all columns, use the
Delete method of the Columns collection object.

For more information on the Delete method of the Column object, go to Column method - Delete on page 60. For
more information on the Column object, go to Column object on page 55. For more information on the Delete
method of the Columns collection object, go to Columns Collectionmethod - Delete on page 53. For more information
on the Columns collection object, go to Columns Collection object on page 50.

Examples
Remove the second column and the column named "First Year" from the Columns collection:
mtbColumns.Remove(2);
mtbColumns.Remove("First Year");

Column object
The Column object contains all the information related to an individual column. The data type on page 6 for each
Column object can be Text, Numeric, DateTime, or DataUnassigned.

Properties
DescriptionProperty

Description of the Column object.Comment on page 56

Type of data in the Column object.DataType on page 57

Formula for the Column object.Formula on page 57

Status of the Formula property for the Column object.FormulaStatus on page 58

Number of missing data rows in the Column objectMissingCount on page 58

Name of the Column object.Name on page 59

Number of the Column object within the Columns collection.Number on page 59

Number of rows in the Column objectRowCount on page 59

Order in which values from text columns will be displayed in output.ValueOrderType on page 60

Methods
DescriptionMethod

Use to clear the data in the Column object without deleting the Column object
from the Columns collection.

Clear on page 60

Use to delete a Column object and remove it from the Columns collection.Delete on page 60

Use to get NumRows of data from a Column object, starting at StartRow.GetData on page 61

Use to set NumRows of Data in the Column object, beginning at StartRow.SetData on page 62

Use to set the order in which text values are displayed in output. Column must be
of type Text or DataUnassigned.

SetValueOrder on page 63

55

Minitab Statistical Software Worksheet Object Reference

Examples
Create a Minitab Application object and add a Column object to the Columns collection of the active worksheet.
Define and populate the array "arrSales" with the column information, retrieve the Column object (mtbColumn),
name it "Sales," and place the information in arrSales into the "Sales" column. Finally, set the Comment property of
the new column.
Mtb.Application mtbApp;
Mtb.Columns mtbColumns;
Mtb.Column mtbColumn;
double[] arraySales = new double[] { 94, 99, 92, 106, 116, 113, 108 };

mtbApp = new Mtb.Application();
mtbColumns = mtbApp.ActiveProject.ActiveWorksheet.Columns;
mtbColumn = mtbColumns.Add(null, null, 1);

mtbColumn.Name = "Sales";
mtbColumn.SetData(arraySales);

mtbColumn.Comment = "Sales data for 1999";

Create aMinitab Application object and add two Column objects to the Columns collection of the active worksheet.
Retrieve the second column, add the value "1993" to the third row, set the Name property to "Second Year," set the
ValueOrderType property to 0, and set the Comment property (column description) to "New column for second
year data." Finally, display message boxes with the values of the column's Name, Number, RowCount, MissingCount,
DataType, ValueOrderType, and Comment properties.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Columns mtbColumns;
Mtb.Column mtbColumn;

mtbColumns = mtbApp.ActiveProject.ActiveWorksheet.Columns;
mtbColumns.Add(null, null, 2);
mtbColumn = mtbColumns.Item(2);
object newval = "1993";
mtbColumn.SetData(ref newval, 3, 1);

//Set property values
mtbColumn.Name = "Second Year";
mtbColumn.SetValueOrder(0);
mtbColumn.Comment = "New column for second year data.";

//Display messages with column property values
MessageBox.Show("The second column is " + mtbColumn.Name);
MessageBox.Show("This is column number: " + mtbColumn.Number.ToString());
MessageBox.Show("This column has this many rows: " + mtbColumn.RowCount.ToString());
MessageBox.Show("This column has this many missing rows: " +
mtbColumn.MissingCount.ToString());
MessageBox.Show("The data type of the column is " + mtbColumn.DataType.ToString());
MessageBox.Show("The ValueOrderType is " + mtbColumn.ValueOrderType.ToString());
MessageBox.Show("The column description is " + mtbColumn.Comment);

Column property - Comment
Description

Description of the Column object.

Type
String

Range
Valid string

56

Minitab Statistical Software Worksheet Object Reference

Access
Read/Write

Column property - DataType
Description

Type of data in the Column object.

Type
MtbDataTypes on page 6

Range
Any MtbDataTypes constant

Access
Read-only

Column property - Formula
Description

Formula for the Column object.

Type
String

Range
Valid string

Access
Read-only

Example
Create 30 rows of random data in column C1, then create a formula that sets the value of C2 equal to the square of
C1. Display a message box showing the value of the Formula and FormulaStatus properties for C2. Finally, change
to manual formula calculation using the CFMANUALLY session command, change a value in C1, and display the same
message. Notice that FormulaStatus changes from 1 to 2.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Worksheet mtbSheet;
Mtb.Column mtbCol1, mtbCol2;

mtbApp.UserInterface.Visible = true;
mtbApp.ActiveProject.ExecuteCommand("rand 30 c1");
mtbApp.ActiveProject.ExecuteCommand("formula c2=c1**2");
mtbSheet = mtbApp.ActiveProject.Worksheets.Item(1);

mtbCol1 = mtbSheet.Columns.Item(1);
mtbCol2 = mtbSheet.Columns.Item(2);

MessageBox.Show("Column 2 formula: " + mtbCol2.Formula + "\r\nColumn 2 formula status:
" + mtbCol2.FormulaStatus.GetHashCode());

mtbApp.ActiveProject.ExecuteCommand("cfmanually");
object newval = 20;

57

Minitab Statistical Software Worksheet Object Reference

mtbCol1.SetData(ref newval,3,1);

MessageBox.Show("Column 2 formula: " + mtbCol2.Formula + "\r\nColumn 2 formula status:
" + mtbCol2.FormulaStatus.GetHashCode());

Column property - FormulaStatus
Description

Status of the Formula property for the Column object.

Type
MtbFormulaStatusTypes on page 6

Range
Any MtbFormulaStatusTypes constant

Access
Read-only

Example
Create 30 rows of random data in column C1, then create a formula that sets the value of C2 equal to the square of
C1. Display a message box showing the value of the Formula and FormulaStatus properties for C2. Finally, change
to manual formula calculation using the CFMANUALLY session command, change a value in C1, and display the same
message. Notice that FormulaStatus changes from 1 to 2.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Worksheet mtbSheet;
Mtb.Column mtbCol1, mtbCol2;

mtbApp.UserInterface.Visible = true;
mtbApp.ActiveProject.ExecuteCommand("rand 30 c1");
mtbApp.ActiveProject.ExecuteCommand("formula c2=c1**2");
mtbSheet = mtbApp.ActiveProject.Worksheets.Item(1);

mtbCol1 = mtbSheet.Columns.Item(1);
mtbCol2 = mtbSheet.Columns.Item(2);

MessageBox.Show("Column 2 formula: " + mtbCol2.Formula + "\r\nColumn 2 formula status:
" + mtbCol2.FormulaStatus.GetHashCode());

mtbApp.ActiveProject.ExecuteCommand("cfmanually");
object newval = 20;
mtbCol1.SetData(ref newval,3,1);

MessageBox.Show("Column 2 formula: " + mtbCol2.Formula + "\r\nColumn 2 formula status:
" + mtbCol2.FormulaStatus.GetHashCode());

Column property - MissingCount
Description

Number of missing data rows in the Column object

Type
Long

58

Minitab Statistical Software Worksheet Object Reference

Range
N/A

Access
Read-only

Column property - Name
Description

Name of the Column object.

Type
String

Range
Valid string

Access
Read/Write

Column property - Number
Description

Number of the Column object within the Columns collection.

Type
Long

Range
1 - number of Column objects within the Columns collection (current Minitab limit is 4000)

Access
Read-only

Column property - RowCount
Description

Number of rows in the Column object

Type
Long

Range
N/A

Access
Read-only

59

Minitab Statistical Software Worksheet Object Reference

Column property - ValueOrderType
Description

Order in which values from text columns will be displayed in output.

Type
MtbValueOrderTypes on page 7

Range
Any MtbValueOrderTypes constant

Access
Read-only

Column method - Clear
Use to clear the data in the Column object without deleting the Column object from the Columns collection.

Syntax
Clear()

Returns
HRESULT

Examples
Create a Minitab Application object and add two columns to the active worksheet. Retrieve the second column in
the Columns collection, name the column "Second Year," and add the value "1993" to the third row.
Mtb.Application mtbApp;
Mtb.Columns mtbColumns;
Mtb.Column mtbColumn;

mtbApp = new Mtb.Application();
mtbApp.UserInterface.Visible = true;
mtbApp.UserInterface.UserControl = true;
mtbColumns = mtbApp.ActiveProject.ActiveWorksheet.Columns;
mtbColumns.Add(null,null,2);

mtbColumn = mtbColumns.Item(2);
mtbColumn.Name = "Second Year";
object newval = "1993";
mtbColumn.SetData(ref newval,3,1);

Clear the data from the Column object without deleting the column itself.
mtbColumn.Clear();

Column method - Delete
Use to delete a Column object and remove it from the Columns collection.

60

Minitab Statistical Software Worksheet Object Reference

Syntax
Delete()

Returns
HRESULT

Remarks
The same results can be achieved using the Removemethod of the Columns collection object. To delete all columns,
use the Delete method of the Columns collection object.

For more information on the Remove method of the Columns collection object, go to Columns Collection method -
Remove on page 54. For more information on the Delete method of the Columns collection object, go to Columns
Collection method - Delete on page 53. For more information on the Columns collection object, go to Columns
Collection object on page 50.

Example
Create a Minitab Application object and add two columns to the active worksheet. Retrieve the second column in
the Columns collection, name the column "Second Year," and add the value "1993" to the third row. Finally, delete
the Column object from the Columns collection.
Mtb.Application mtbApp;
Mtb.Columns mtbColumns;
Mtb.Column mtbColumn;

mtbApp = new Mtb.Application();
mtbApp.UserInterface.Visible = true;
mtbApp.UserInterface.UserControl = true;
mtbColumns = mtbApp.ActiveProject.ActiveWorksheet.Columns;
mtbColumns.Add(null,null,2);

mtbColumn = mtbColumns.Item(2);
mtbColumn.Name = "Second Year";
object newval = "1993";
mtbColumn.SetData(ref newval,3,1);

mtbColumn.Delete();

Column method - GetData
Use to get NumRows of data from a Column object, starting at StartRow.

Syntax
GetData(StartRow as Long, NumRows as Long)

Arguments

StartRow
Optional. First row to get. The default is 1.

NumRows
Optional. Number of rows to get. The default is 1.

61

Minitab Statistical Software Worksheet Object Reference

Returns
Variant

Remarks
If neither StartRow nor NumRows is specified, then GetData gets all rows.

Examples
Use the GetData method to populate an array with all the values from the current column, then use a loop to print
the values in message boxes.
double [] cvQ1sales;
cvQ1sales = mtbColumn.GetData();

for (int i = 0; i < (cvQ1sales.Length); i++)
{

MessageBox.Show(cvQ1sales[i].ToString());

Get one value (the first value) from the column and print it in a message box.
MessageBox.Show("The value is " + mtbColumn.GetData(1, 1).ToString());

Get one value (the second value) from the column and print it in a message box.
MessageBox.Show("The value is " + mtbColumn.GetData(2, 1).ToString());

Column method - SetData
Use to set NumRows of Data in the Column object, beginning at StartRow.

Syntax
SetData(Data as Variant, StartRow as Long, NumRows as Long)

Arguments

Data
Data to write to the column. Can be numeric, text, or date/time.

StartRow
Optional. First row to set. The default is 1.

NumRows
Optional. Number of rows to set. The default is 1.

Returns
HRESULT

Remarks
If neither StartRow nor NumRows is specified, SetData sets the entire column and deletes all previous entries.
Otherwise, entries outside the specified range of rows are not affected.

62

Minitab Statistical Software Worksheet Object Reference

Examples
Retrieve the first column in the Columns collection, then populate that columnwith the contents of the array arrIndex.
mtbColumn = mtbColumns.Item(1);
mtbColumn.SetData(arrIndex);

Place the value 10 in row 20 of the current Minitab column, then print the value for row 20 in the Immediate window.
object newval = 10;
mtbColumn.SetData(ref newval, 20, 1);
MessageBox.Show(mtbColumn.GetData(20, 1).ToString());

Change the data type of the column from numeric to text, place "Green" in the first row of the column, and print it in
a message box.
mtbProj.ExecuteCommand("text c1 c1");
object newval2 = "Green";
mtbColumn.SetData(ref newval2, 1, 1);
MessageBox.Show("The value is " + mtbColumn.GetData(1, 1).ToString());

Column method - SetValueOrder
Use to set the order in which text values are displayed in output. Column must be of type Text or DataUnassigned.

For more information on types of columns, go to MtbDataTypes on page 6.

Syntax
SetValueOrder(ValueOrderType as MtbValueOrderTypes, UserDefinedOrder as Variant)

Arguments

ValueOrderType
Required. Value order type for column. May be any MtbValueOrderTypes constant. For constants of
MtbValueOrderTypes, go to MtbValueOrderTypes on page 7.

UserDefinedOrder
Optional. Variant array specifying user defined value order. Required for MtbValueOrderTypes = 2, ignored
otherwise.

Returns
HRESULT

Example
Create a new Minitab Application object, create and add text data to column 1, then set a user-defined value order
for the column.
Mtb.Application mtbApp = new Mtb.Application();

string[] arData = new string[6];
object[] arOrder = new object[3];

arData[0] = "a";
arData[1] = "a";
arData[2] = "b";
arData[3] = "b";
arData[4] = "c";
arData[5] = "c";

63

Minitab Statistical Software Worksheet Object Reference

arOrder[0] = "c";
arOrder[1] = "a";
arOrder[2] = "b";

Mtb.Project mtbProj = mtbApp.ActiveProject;
mtbProj.ActiveWorksheet.Columns.Add(null, null, 3);
mtbProj.ActiveWorksheet.Columns.Item(1).SetData(arData);
mtbProj.ActiveWorksheet.Columns.Item(1).SetValueOrder(Mtb.MtbValueOrderTypes.UserDefined,
arOrder);

Constants Collection object
The Constants collection is a set of all the Constant objects within a Worksheet object. It supports the standard
collection properties and methods.

The Constants collection for a worksheet is empty by default.

Properties
DescriptionProperty

Number of Constant objects within the Constants collection.Count on page 64

Methods
DescriptionMethod

Use to add Count Constant objects to the Constants collection in the position
before Before or after After.

Add on page 65

Use to remove all Constant objects from the Constants collection.Delete on page 66

Use to return a Constant object within the Constants collection.Item on page 66

Use to delete a Constant object and remove it from the Constants collection.Remove on page 67

Example
Retrieve the Constants collection and add a constant, then name it "SalesFactor."
Mtb.Constants mtbConstants;
mtbConstants = mtbSheet.Constants;
mtbConstants.Add().Name = "SalesFactor";

Constants Collection property - Count
Description

Number of Constant objects within the Constants collection.

Type
Long

Range
0 - number of Constant objects in the Constants collection

64

Minitab Statistical Software Worksheet Object Reference

Access
Read-only

Example
Retrieve the Constants collection, add four Constant objects to it, then display the number of Constant objects
in the Constants collection in a message box.
mtbConstants = mtbSheet.Constants;
mtbConstants.Add(null, null, 4);
MessageBox.Show("Number of constants in collection: " + mtbConstants.Count.ToString());

Constants Collection method - Add
Use to add Count Constant objects to the Constants collection in the position before Before or after After.

Syntax
Add(Before as Variant, After as Variant, Quantity as Long)

Arguments

Before
Optional. Constant object to add new constants before.

After
Optional. Constant object to add new constants after.

Quantity
Optional. Number of constants to add. The default is 1.

Returns
Constant on page 68

Remarks
You can specify either Before or After, but not both. Use an integer (Long) from 1 - the number of constants in
the collection, or the name(String) of a constant. If neither Before nor After is specified, then the constants are
added after the last constant in the collection. For more information on the Name property, go to Column property -
Name on page 59.

The first constant added is returned.

Examples
Retrieve the Constants collection and add one constant to it after the last constant.
mtbConstants = mtbSheet.Constants;
mtbConstants.Add();

Add two constants to the Constants collection before the third constant, then name the first constant "Factor1."
mtbConstants.Add(3,null,2).Name = "Factor1";

65

Minitab Statistical Software Worksheet Object Reference

Add two constants to the Constants collection after the third constant.
mtbConstants.Add(null,3,2);

Add four constants to the Constants collection before the "Factor1" constant, then name the first constant
"NewFactor1."
mtbConstants.Add("Factor1", null, 4).Name = "NewFactor1";

Add two constants to the Constants collection after the "Factor1" constant.
mtbConstants.Add(null,"Factor1",2);

Constants Collection method - Delete
Use to remove all Constant objects from the Constants collection.

Syntax
Delete()

Returns
HRESULT

Remarks
To remove a single constant, use Remove or the Delete method of the Constant object.

For more information on the Remove method, go to Constants Collection method - Remove on page 67. For more
information on the Delete method, go to Constant method - Delete on page 71. For more information on the Constant
object, go to Constant object on page 68.

Example
Delete the Constants collection, including all its constants.
mtbConstants.Delete();

Constants Collection method - Item
Use to return a Constant object within the Constants collection.

Syntax
Item(Index as Variant)

Arguments

Index
Required. The index of the constant as an integer (Long) from 1 - the number of constants in the collection, or
the name on page 71 (String) of the constant.

66

Minitab Statistical Software Worksheet Object Reference

Returns
Constant on page 68

Examples
Retrieve the second constant in the Constants collection, name the constant "Conversion Factor", and print the name
in a message box.
mtbConstant = mtbConstants.Item(2);
mtbConstant.Name = "Conversion Factor";
MessageBox.Show("The second constant is " + mtbConstant.Name);

Retrieve the constant called "Metric" and print the name in a message box.
mtbConstant = mtbConstants.Item("Metric");
MessageBox.Show("The current constant is " + mtbConstant.Name);

Constants Collection method - Remove
Use to delete a Constant object and remove it from the Constants collection.

Syntax
Remove(Index as Variant)

Arguments

Index
Required. The index of the constant as an integer (Long) from 1 - the number of constants in the collection, or
the name(String) of the constant.
For more information on name, go to Constant property - Name on page 71.

Returns
HRESULT

Remarks
The same results can be achieved using the Delete method of the Constant object. To remove all constants, use
the Delete method of the Constants collection object.

For more information on the Delete method for the Constant object, go to page 71. For more information on the
Constant object, go to page 68. For more information on the DeleteMethod of the Constants collection object,
go to page 66. For more information on the Constants collection object, go to page 64.

Example
Remove the first constant and the constant named "Factor1" from the Constants collection.
mtbConstants.Remove(1);
mtbConstants.Remove("Factor1");

67

Minitab Statistical Software Worksheet Object Reference

Constant object
The Constant object contains all the information related to an individual constant. The Constant object can contain
numeric or text values.

Properties
DescriptionProperty

Description of the Constant object.Comment on page 68

Type of the data in the Constant object.DataType on page 69

Formula for the Constant object.Formula on page 69

Status of the Formula property for the Constant object.FormulaStatus on page 70

Name of the Constant objectName on page 71

Number of the Constant object.Number on page 71

Methods
DescriptionMethod

Use to delete a Constant object and remove it from the Constants collection.Delete on page 71

Use to return the value stored in the constant.GetData on page 72

Use to set the value of the Constant object using the value in Data.SetData on page 72

Example
Define the Constant object (mtbConstant) and retrieve the first constant in the Constants collection, set the
value of the constant to 22.2, then print the constant in a message box.
Mtb.Constant mtbConstant;
mtbConstant = mtbSheet.Constants.Item(1);
mtbConstant.SetData(22.2);
MessageBox.Show(mtbConstant.GetData().ToString());

Constant property - Comment
Description

Description of the Constant object.

Type
String

Range
Valid string

Access
Read/Write

68

Minitab Statistical Software Worksheet Object Reference

Example
Add a comment to the constant and print the comment in a message box.
mtbConstant.Comment = "This constant converts English to metric.";
MessageBox.Show(mtbConstant.Comment);

Constant property - DataType
Description

Type of the data in the Constant object.

Type
MtbDataTypes on page 6

Range
Any MtbDataTypes constant except DateTime

Access
Read-only

Example
Display the data type of the constant in a message box.
MessageBox.Show("The data type of the constant is " + mtbConstant.DataType);

Constant property - Formula
Description

Formula for the Constant object.

Type
String

Range
Valid string

Access
Read-only

Example
Create two constants, K1 and K2. Set the value of K1 to 3 and create a formula that makes the value of K2 equal to K1
squared. Display a message box showing the values of both constants as well as the Formula and FormulaStatus
properties of K2. Finally, change to manual formula calculation using the CFMANUALLY session command, change the
value of K1, then display the same message. Notice that FormulaStatus changes from 1 to 2.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj = mtbApp.ActiveProject;
Mtb.Worksheet mtbSheet = mtbProj.ActiveWorksheet;

Mtb.Constants mtbConstants = mtbSheet.Constants;

Mtb.Constant mtbConst1, mtbConst2;
mtbConst1 = mtbConstants.Add();

69

Minitab Statistical Software Worksheet Object Reference

mtbConst2 = mtbConstants.Add();

mtbConst1.SetData(3);

mtbProj.ExecuteCommand("FORMULA K2 = K1**2");

MessageBox.Show("K1 = " + mtbConst1.GetData() + "\r\n" +
"K2 formula = " + mtbConst2.Formula + "\r\n" +
"K2 = " + mtbConst2.GetData() + "\r\n" +
"K2 formula status = " + mtbConst2.FormulaStatus.GetHashCode());

mtbProj.ExecuteCommand("CFMANUALLY");

mtbConst1.SetData(5);

MessageBox.Show("K1 = " + mtbConst1.GetData() + "\r\n" +
"K2 formula = " + mtbConst2.Formula + "\r\n" +
"K2 = " + mtbConst2.GetData() + "\r\n" +
"K2 formula status = " + mtbConst2.FormulaStatus.GetHashCode());

Constant property - FormulaStatus
Description

Status of the Formula property for the Constant object.

Type
MtbFormulaStatusTypes on page 6

Range
Any MtbFormulaStatusTypes constant

Access
Read-only

Example
Create two constants, K1 and K2. Set the value of K1 to 3 and create a formula that makes the value of K2 equal to K1
squared. Display a message box showing the values of both constants as well as the Formula and FormulaStatus
properties of K2. Finally, change to manual formula calculation using the CFMANUALLY session command, change the
value of K1, then display the same message. Notice that FormulaStatus changes from 1 to 2.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj = mtbApp.ActiveProject;
Mtb.Worksheet mtbSheet = mtbProj.ActiveWorksheet;

Mtb.Constants mtbConstants = mtbSheet.Constants;

Mtb.Constant mtbConst1, mtbConst2;
mtbConst1 = mtbConstants.Add();
mtbConst2 = mtbConstants.Add();

mtbConst1.SetData(3);

mtbProj.ExecuteCommand("FORMULA K2 = K1**2");

MessageBox.Show("K1 = " + mtbConst1.GetData() + "\r\n" +
"K2 formula = " + mtbConst2.Formula + "\r\n" +
"K2 = " + mtbConst2.GetData() + "\r\n" +
"K2 formula status = " + mtbConst2.FormulaStatus.GetHashCode());

mtbProj.ExecuteCommand("CFMANUALLY");

70

Minitab Statistical Software Worksheet Object Reference

mtbConst1.SetData(5);

MessageBox.Show("K1 = " + mtbConst1.GetData() + "\r\n" +
"K2 formula = " + mtbConst2.Formula + "\r\n" +
"K2 = " + mtbConst2.GetData() + "\r\n" +
"K2 formula status = " + mtbConst2.FormulaStatus.GetHashCode());

Constant property - Name
Description

Name of the Constant object

Type
String

Range
Valid string

Access
Read/Write

Example
Retrieve the second constant in the Constants collection, name the constant "Factor2," and print the name in a
message box.
mtbConstant = mtbConstants.Item(2);
mtbConstant.Name = "Factor2";
MessageBox.Show("The second constant is " + mtbConstant.Name);

Constant property - Number
Description

Number of the Constant object.

Type
Long

Range
1 - number of Constant objects in the Constants collection (current Minitab limit is 1000)

Access
Read-only

Example
Display in a message box the number of the Constant object within the Constants collection.
MessageBox.Show(mtbConstant.Number.ToString());

Constant method - Delete
Use to delete a Constant object and remove it from the Constants collection.

71

Minitab Statistical Software Worksheet Object Reference

Syntax
Delete()

Returns
HRESULT

Remarks
The same results can be achieved using the Removemethod of the Constants collection object. To delete all constants,
use the Delete method of the Constants collection object.

For more information on the Remove method, go to page 64. For more information on the Delete method, go to
page 66. For more information on the Constants collection object, go to page 64.

Example
Delete the Constant object from the Constants collection.
mtbConstant.Delete();

Constant method - GetData
Use to return the value stored in the constant.

Syntax
GetData()

Returns
Variant

Example
Print the value of the constant in a message box.
MessageBox.Show("The constant value is " + mtbConstant.GetData().ToString());

Constant method - SetData
Use to set the value of the Constant object using the value in Data.

Syntax
SetData(Data as Variant)

Arguments

Data
Required. Value to be stored in constant. Can be numeric or text.

72

Minitab Statistical Software Worksheet Object Reference

Returns
HRESULT

Examples
Retrieve the first constant in the Constants collection, then set it equal to "Purple."
mtbConstant = mtbConstants.Item(1);
mtbConstant.SetData("Purple");

Set the value of the current constant to 4.275, then print the value in the Immediate window.
mtbConstant.SetData(4.275);
string writeValue = mtbConstant.GetData().ToString();
Console.WriteLine(writeValue);

Matrices Collection object
The Matrices collection is a set of all the Matrix objects within a Worksheet object. It supports the standard
collection properties and methods.

The Matrices collection for a worksheet is empty by default.

Properties
DescriptionProperty

Number of Matrix objects within the Matrices collection.Count on page 73

Methods
DescriptionMethod

Use to add Count Matrix objects to the Matrices collection in the position
before Before or after After.

Add on page 74

Use to remove all Matrix objects from the Matrices collection.Delete on page 75

Use to return a Matrix object within the Matrices collection.Item on page 75

Use to delete a Matrix object and remove it from the Matrices collection.Remove on page 76

Example
Retrieve the Matrices collection (mtbMatrices) and add a matrix, naming it "Weather Factors."
Mtb.Matrices mtbMatrices;
mtbMatrices = mtbSheet.Matrices;
mtbMatrices.Add().Name = "Weather Factors";

Matrices Collection property - Count
Description

Number of Matrix objects within the Matrices collection.

73

Minitab Statistical Software Worksheet Object Reference

Type
Long

Range
0 - number of Matrix objects in the Matrices collection

Access
Read-only

Example
Retrieve the Matrices collection, add four Matrix objects to it, then display in a message box the number of Matrix
objects in the Matrices collection.
mtbMatrices = mtbSheet.Matrices;
mtbMatrices.Add(null,null,4);
MessageBox.Show("Number of matrices in collection: " + mtbMatrices.Count.ToString());

Matrices Collection method - Add
Use to add Count Matrix objects to the Matrices collection in the position before Before or after After.

Syntax
Add(Before as Variant, After as Variant, Quantity as Long)

Arguments

Before
Optional. Matrix object to add new matrices before.

After
Optional. Matrix object to add new matrices after.

Quantity
Optional. Number of matrices to add. The default is 1.

Returns
Matrix on page 77

Remarks
You can specify either Before or After, but not both. Use an integer (Long) from 1 - the number of matrices in the
collection, or the name on page 79 (String) of a matrix. If neither Before nor After is specified, then the matrices
are added after the last matrix in the collection.

The first matrix added is returned.

For more information on name, go to Matrix property - Name on page 79.

74

Minitab Statistical Software Worksheet Object Reference

Examples
Retrieve the Matrices collection and add one matrix to it after the last matrix.
mtbMatrices = mtbSheet.Matrices;
mtbMatrices.Add();

Add two matrices to the Matrices collection before the third matrix, and name the first added matrix "Gradient1."
mtbMatrices.Add(3,null,2).Name = "Gradient1";

Add two matrices to the Matrices collection after the third matrix.
mtbMatrices.Add(null,3,2);

Add four matrices to the Matrices collection before the "Gradient1" matrix, and name the first added matrix
"NewGradient1."
mtbMatrices.Add("Gradient1", null, 4).Name = "NewGradient1";

Add two matrices to the Matrices collection after the "Gradient1" matrix.
mtbMatrices.Add(null,"Gradient1",2);

Matrices Collection method - Delete
Use to remove all Matrix objects from the Matrices collection.

Syntax
Delete()

Returns
HRESULT

Remarks
To remove a single matrix, use Remove or the Delete method of the Matrix object.

For more information on the Remove method, go to Matrices Collection method - Remove on page 76. For more
information on the Deletemethod, go to Matrix method - Delete on page 80. For more information on the Matrix
object, go to Matrix object on page 77.

Example
Delete the Matrices collection, including all its Matrix objects.
mtbMatrices.Delete();

Matrices Collection method - Item
Use to return a Matrix object within the Matrices collection.

Syntax
Item(Index as Variant)

75

Minitab Statistical Software Worksheet Object Reference

Arguments

Index
Required. The index of the matrix as an integer (Long) from 1 - the number of matrices in the collection, or the
name(String) of the matrix.
For more information on name, go to Matrix property - Name on page 79.

Returns
Matrix on page 77

Examples
Retrieve the second matrix in the Matrices collection, name the matrix "gradient," then print the name in a message
box.
mtbMatrix = mtbMatrices.Item(2);
mtbMatrix.Name = "gradient";
MessageBox.Show("The second matrix is " + mtbMatrix.Name);

Retrieve the matrix called "Gradient" and print the name in a message box.
mtbMatrix = mtbMatrices.Item("Gradient");
MessageBox.Show("The current matrix is " + mtbMatrix.Name);

Matrices Collection method - Remove
Use to delete a Matrix object and remove it from the Matrices collection.

Syntax
Remove(Index as Variant)

Arguments

Index
Required. The index of the matrix as an integer (Long) from 1 - the number of matrices in the collection, or the
name (String) of the matrix.
For more information on name, go to Matrix property - Name on page 79.

Returns
HRESULT

Remarks
The same results can be achieved using the Delete method of the Matrix object. To remove all matrices, use the
Delete method of the Matrices collection object.

For more information on the Delete method of the Matrix object, go to Matrix method - Delete on page 80. For
more information on the Matrix object, go toMatrix object on page 77. For more information on the Deletemethod
of the Matrices collection object, go to Matrices Collection method - Delete on page 75. For more information on
the Matrices collection object, go to Matrices Collection object on page 73.

76

Minitab Statistical Software Worksheet Object Reference

Example
Remove the first matrix and the matrix named "Gradient1" from the Matrices collection.
mtbMatrices.Remove(1);
mtbMatrices.Remove("Gradient1");

Matrix object
The Matrix object contains all the information related to an individual matrix. The Matrix object can contain only
numeric data values.

Properties
DescriptionProperty

Number of columns in the Matrix objectColumnCount on page 78

Description of the Matrix objectComment on page 78

Number of missing values in the Matrix objectMissingCount on page 78

Name of the Matrix objectName on page 79

Number of the Matrix object in the Matrices collection.Number on page 79

Number of rows in the Matrix objectRowCount on page 80

Methods
DescriptionMethod

Use to delete a Matrix object and remove it from the Matrices collection.Delete on page 80

Use to return the matrix value or values in the specified row and column.GetData on page 81

Use to set values for a Matrix object using the elements specified in Data.SetData on page 81

Example
Define and populate the array "arrTemps" with data values , retrieve the first matrix, name the matrix "Temperatures"
and place the information in arrTemps into the "Temperatures" matrix with 4 rows and 3 columns, then add a comment:
object [] arrTemps = new object [12];

arrTemps[0] = 72;
arrTemps[1] = 95;
arrTemps[2] = 69;
arrTemps[3] = 87;
arrTemps[4] = 86;
arrTemps[5] = 75;
arrTemps[6] = 58;
arrTemps[7] = 92;
arrTemps[8] = 89;
arrTemps[9] = 66;
arrTemps[10] = 70;
arrTemps[11] = 91;

Mtb.Matrix mtbMatrix;
mtbMatrix = mtbMatrices.Item(1);
mtbMatrix.Name = "Temperatures";

77

Minitab Statistical Software Worksheet Object Reference

mtbMatrix.SetData(ref arrTemps, 4, 3);
mtbMatrix.Comment = "Temperatures for experiment 1";

Matrix property - ColumnCount
Description

Number of columns in the Matrix object

Type
Long

Range
1 - N

Access
Read-only

Example
Display in a message box the number of columns in the Matrix object.
MessageBox.Show("This matrix has this many columns: " +
mtbMatrix.ColumnCount.ToString());

Matrix property - Comment
Description

Description of the Matrix object

Type
String

Range
Valid string

Access
Read/Write

Example
Add a comment to the matrix.
mtbMatrix.Comment = "Temperature gradient values.";

Matrix property - MissingCount
Description

Number of missing values in the Matrix object

Type
Long

78

Minitab Statistical Software Worksheet Object Reference

Range
N/A

Access
Read-only

Example
Display in a message box the number of missing values in the Matrix object.
MessageBox.Show("This matrix has this many missing values: " +
mtbMatrix.MissingCount.ToString());

Matrix property - Name
Description

Name of the Matrix object

Type
String

Range
Valid string

Access
Read/Write

Example
Retrieve the secondmatrix in the Matrices collection, name the matrix "Gradient 2," then print the name in a message
box:
mtbMatrix = mtbMatrices.Item(2);
mtbMatrix.Name = "Gradient 2";
MessageBox.Show("The second matrix is " + mtbMatrix.Name);

Matrix property - Number
Description

Number of the Matrix object in the Matrices collection.

Type
Long

Range
1 - number of the Matrix objects in the Matrices collection (current Minitab limit is 1000)

Access
Read-only

79

Minitab Statistical Software Worksheet Object Reference

Example
Display in a message box the number of the Matrix object within the Matrices collection.
MessageBox.Show("This is matrix number: " + mtbMatrix.Number.ToString());

Matrix property - RowCount
Description

Number of rows in the Matrix object

Type
Long

Range
1 - N

Access
Read-only

Example
Display in a message box the number of rows in the Matrix object.
MessageBox.Show("This matrix has this many rows: " + mtbMatrix.RowCount.ToString());

Matrix method - Delete
Use to delete a Matrix object and remove it from the Matrices collection.

Syntax
Delete()

Returns
HRESULT

Remarks
The same results can be achieved using the Removemethod of the Matrices collection object. To delete all matrices,
use the Delete method of the Matrices Collection object.

For more information on the Remove method on the Matrices collection object, go to Matrices Collection method
- Remove on page 76. For more information on the Delete method, go to Matrices Collection method - Delete on
page 75. For more information on the Matrices collection object, go to Matrices Collection object on page 73.

Example
Delete the Matrix object from the Matrix collection.
mtbMatrix.Delete();

80

Minitab Statistical Software Worksheet Object Reference

Matrix method - GetData
Use to return the matrix value or values in the specified row and column.

Syntax
GetData(Row as Long, Col as Long)

Arguments

Row
Optional. Row of the value to get.

Col
Optional. Column of the value to get.

Returns
Variant

Remarks
If you specify Row you must specify Col, and vice versa. If neither Row nor Col is specified, then GetData gets the
entire matrix.

Multiple data values are returned in a vector in column major order, that is, all rows of column 1 are placed in the
vector first, followed by column 2 rows, column 3 rows, etc.

Example
Get the value in the second row, second column of the matrix and print it in a message box.
MessageBox.Show("The value is " + mtbMatrix.GetData(2, 2));

Matrix method - SetData
Use to set values for a Matrix object using the elements specified in Data.

Syntax
SetData(Data as Variant, Rows as Long, Cols as Long)

Arguments

Data
Required. Numeric value or values to set in the matrix.

Rows
Required. Either the row of the matrix where a single value is to be set, or the number of rows to be set, starting
at row 1.

81

Minitab Statistical Software Worksheet Object Reference

Cols
Required. Either the column of the matrix where a single value is to be set, or the number of columns to be set,
starting at column 1.

Returns
HRESULT

Remarks
If Data holds an individual numeric value, then Rows and Cols refer to an individual cell in the matrix that will be set.
If Data holds multiple numeric values, then all previous data in the matrix is deleted and the matrix is set starting at
position 1,1.

Data is read into the Matrix object column by column. Therefore, to set multiple data values in the matrix, Data
must be a vector in column major order; that is, place all rows of column 1 in the vector first, followed by column 2
rows, column 3 rows, etc.

Examples
Retrieve the first matrix in the Matrices collection and populate four rows and three columns in the matrix with the
array "arrIndex."
Mtb.Matrix mtbMatrix = mtbMatrices.Item(1);

int [] arrIndex1 = new int [12];

arrIndex1[0] = 72;
arrIndex1[1] = 95;
arrIndex1[2] = 69;
arrIndex1[3] = 87;
arrIndex1[4] = 86;
arrIndex1[5] = 75;
arrIndex1[6] = 58;
arrIndex1[7] = 92;
arrIndex1[8] = 89;
arrIndex1[9] = 66;
arrIndex1[10] = 70;
arrIndex1[11] = 91;

object arrIndex = arrIndex1;

int rows = 4;
int cols = 3;

mtbMatrix.SetData(ref arrIndex, rows, cols);

Place the value 10 in row 2, column 2 of the current matrix.
object newval = 10;
mtbMatrix.SetData(ref newval, 2, 2);

82

Minitab Statistical Software Worksheet Object Reference

C Command Object Reference

Commands Collection object
The Commands collection contains the commands that have been issued to Minitab during the session.

Properties
DescriptionProperty

Number of Command objects.Count on page 84

Returns an OutputDocument object containing all output generated from all
commands in the Commands collection.

OutputDocument on page 84

Methods
DescriptionMethod

Use to remove all Command objects from the Commands collection.Delete on page 84

Use to return a Command object within the Commands collection.Item on page 85

Use to delete a Command object and remove it from the Commands collection.Remove on page 85

Example
Create a Minitab Application object and execute three Minitab commands. Then delete the first command, and
loop through the remaining two, displaying a message box with the values of the following properties for each, as
well as the name of the worksheet:

• CommandLanguage

• Name

• Tag

• CreatedBy

• CreateDate

Save the output document for each command and delete all commands at the end.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj;
Mtb.Command mtbCom;

mtbApp.UserInterface.Visible = true;
mtbProj = mtbApp.ActiveProject;

mtbProj.ExecuteCommand("RAND 30 C1-C2");
mtbProj.ExecuteCommand("REGRESS C1 1 C2");

//For the next command, use the ZTAG subcommand to set the Tag property.
mtbProj.ExecuteCommand("CORR C1 C2; ZTAG \"My Correlation\".");

mtbProj.Commands.Item(1).Delete();

83

Minitab Statistical Software Command Object Reference

for (int i = 1; i <= mtbProj.Commands.Count; i++)
{

mtbCom = mtbProj.Commands.Item(i);

MessageBox.Show("CommandLanguage = " + mtbCom.CommandLanguage + "\r\nCommand Name
= " +

mtbCom.Name + "\r\nTag = " + mtbCom.Tag + "\r\nCreated by " + mtbCom.CreatedBy
+

"\r\nCreated on " + mtbCom.CreateDate + "\r\nWorksheet = " +
mtbCom.Worksheet.Name);

mtbCom.OutputDocument.SaveAs("C:\\Output for Command " + i, true,
Mtb.MtbOutputFileTypes.OFRTF);

}

mtbProj.Commands.Delete();

Commands Collection property - Count
Description

Number of Command objects.

Type
Long

Range
Any valid long integer

Access
Read-only

Commands Collection property - OutputDocument
Description

Returns an OutputDocument object containing all output generated from all commands in the Commands
collection.

Type
OutputDocument on page 96

Range
N/A

Access
Read-only

Commands Collection method - Delete
Use to remove all Command objects from the Commands collection.

Syntax
Delete()

84

Minitab Statistical Software Command Object Reference

Returns
HRESULT

Remarks
To remove a single command, use Remove or the Delete method of the Command object.

For more information on the Remove method, go to Commands Collection method - Remove on page 85. For more
information on the Delete method, go to Command method - Delete on page 89. For more information on the
Command object, go to Command object on page 86.

Commands Collection method - Item
Use to return a Command object within the Commands collection.

Syntax
Item(Index as Variant)

Arguments

Index
Required. The index of the command as an integer (Long) from 1 - the number of commands in the collection.

Returns
Command on page 86

Commands Collection method - Remove
Use to delete a Command object and remove it from the Commands collection.

Syntax
Remove(Index as Variant)

Arguments

Index
Required. The index of the command as an integer (Long) from 1 - the number of commands in the collection.

Returns
HRESULT

Remarks
The same results can be achieved using the Delete method of the Command object. To remove all commands, use
the Delete method of the Commands collection object.

85

Minitab Statistical Software Command Object Reference

For more information on the Deletemethod of the Command object, go to Command method - Delete on page 89.
For more information on the Command object, go to Command object on page 86. For more information on the
Delete method of the commands collection object, go to Commands Collection method - Delete on page 84. For
mor information on the Commands collection object, go to Commands Collection object on page 83.

Example
Delete the first command from the Commands collection for a Minitab application set as mtbApp.
mtbApp.ActiveProject.Commands.Remove(1);

Command object
Command objects are created when you execute a Minitab command either programmatically or directly in Minitab.

Properties
DescriptionProperty

Command language utilized to create the command object.CommandLanguage on page 87

The date and time the command was generated.CreateDate on page 87

The name of the Minitab command that generated the output.Name on page 88

Returns an OutputDocument object containing all output generated by the
command.

OutputDocument on page 88

Returns the Outputs collection generated by the command.Outputs on page 88

A string used to identify or describe the Command object.Tag on page 89

The worksheet that was utilized as the input for the command.Worksheet on page 89

Methods
DescriptionMethod

Use to delete a Command object and remove it from the Commands collection.Delete on page 89

Example
Create a Minitab Application object and execute three Minitab commands. Then delete the first command, and
loop through the remaining two, displaying a message box with the values of the following properties for each, as
well as the name of the worksheet:

• CommandLanguage

• Name

• Tag

• CreatedBy

• CreateDate

Save the output document for each command and delete all commands at the end.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj;

86

Minitab Statistical Software Command Object Reference

Mtb.Command mtbCom;

mtbApp.UserInterface.Visible = true;
mtbProj = mtbApp.ActiveProject;

mtbProj.ExecuteCommand("RAND 30 C1-C2");
mtbProj.ExecuteCommand("REGRESS C1 1 C2");

//For the next command, use the ZTAG subcommand to set the Tag property.
mtbProj.ExecuteCommand("CORR C1 C2; ZTAG \"My Correlation\".");

mtbProj.Commands.Item(1).Delete();

for (int i = 1; i <= mtbProj.Commands.Count; i++)
{

mtbCom = mtbProj.Commands.Item(i);

MessageBox.Show("CommandLanguage = " + mtbCom.CommandLanguage + "\r\nCommand Name
= " +

mtbCom.Name + "\r\nTag = " + mtbCom.Tag + "\r\nCreated by " + mtbCom.CreatedBy
+

"\r\nCreated on " + mtbCom.CreateDate + "\r\nWorksheet = " +
mtbCom.Worksheet.Name);

mtbCom.OutputDocument.SaveAs("C:\\Output for Command " + i, true,
Mtb.MtbOutputFileTypes.OFRTF);

}

mtbProj.Commands.Delete();

Command property - CommandLanguage
Description

Command language utilized to create the command object.

Type
String

Range
Valid string

Access
Read-only

If the command is a custom command, the value of the CommandLanguage property is "COMCUSTOM."

Command property - CreateDate
Description

The date and time the command was generated.

Type
String

Range
Valid string

87

Minitab Statistical Software Command Object Reference

Access
Read-only

Command property - Name
Description

The name of the Minitab command that generated the output.

Type
String

Range
Valid string

Access
Read-only

Command property - OutputDocument
Description

Returns an OutputDocument object containing all output generated by the command.

Type
OutputDocument on page 96

Range
N/A

Access
Read-only

Command property - Outputs
Description

Returns the Outputs collection generated by the command.

Type
Outputs on page 90 collection

Range
N/A

Access
Read-only

88

Minitab Statistical Software Command Object Reference

Command property - Tag
Description

A string used to identify or describe the Command object. Null by default.

Type
String

Range
Valid string

Access
Read/Write

The Tag property for most commands can also be set from the Minitab itself using the ZTAG subcommand. For
example, entering the following in the Command Line pane creates a Command object with the tag "My Z-Test." The
argument for ZTAG may be a string or text constant.
OneZ 20 3;
Sigma 1;
Test 2;
ZTAG "My Z-Test".

Command property - Worksheet
Description

The worksheet that was utilized as the input for the command.

Type
Worksheet on page 44

Range
Any worksheet in the Worksheets collection

Access
Read-only for Minitab commands; Read/Write for custom commands

Command method - Delete
Use to delete a Command object and remove it from the Commands collection.

Syntax
Delete()

Returns
HRESULT

Remarks
The same results can be achieved using the Remove method of the Commands collection.

89

Minitab Statistical Software Command Object Reference

For more information on the Remove method, go to Commands Collection method - Remove on page 85. For more
information on the Commands collection, go to Commands Collection object on page 83.

Outputs Collection object
The Outputs collection for each Command object contains all the output generated by that command.

For more information on command objects, go to Command object on page 86.

Properties
DescriptionProperty

The number of Output objects within the Outputs collection. For more information,
go to Output object on page 92.

Count on page 91

Methods
DescriptionMethod

Use to remove all Output objects from the Outputs collection.Delete on page 91

Use to return an Output object within the Outputs collection.Item on page 91

Use to delete an Output object and remove it from the Outputs collection.Remove on page 92

Example
Generate random data, then create a scatterplot and a regression analysis. Save the scatterplot to a file. Delete Output
objects using the Remove method of the Outputs collection and the Delete method of an Output object. Finally,
delete all outputs for a command at once using the Delete method of the Outputs collection.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj;

mtbApp.UserInterface.Visible = true;
mtbProj = mtbApp.ActiveProject;

mtbProj.ExecuteCommand("RAND 30 C1-C2");
mtbProj.ExecuteCommand("PLOT C1*C2");
mtbProj.ExecuteCommand("REGRESS C1 1 C2");

//Save the plot to a file
mtbProj.Commands.Item(2).Outputs.Item(1).Graph.SaveAs("C:\\MyGraph",true,
Mtb.MtbGraphFileTypes.GFPNGColor);

Mtb.Command mtbCom = mtbProj.Commands.Item(3);

//Save the output document as an HTML file
mtbCom.OutputDocument.SaveAs("C:\\MyOutput", true, Mtb.MtbOutputFileTypes.OFHTML);

//Delete the first 2 Output objects and save the output document again
mtbCom.Outputs.Remove(1);
mtbCom.Outputs.Item(1).Delete();
mtbCom.OutputDocument.SaveAs("C:\\MyOutput2", true,
Mtb.MtbOutputFileTypes.OFHTML);

//Delete all remaining Outputs
mtbCom.Outputs.Delete();

90

Minitab Statistical Software Command Object Reference

Outputs Collection property - Count
Description

The number of Output objects within the Outputs collection. For more information, go to Output object on
page 92.

Type
Long

Range
0 to the number of Output objects within the Outputs collection

Access
Read-only

Outputs Collection method - Delete
Use to remove all Output objects from the Outputs collection.

Syntax
Delete()

Returns
HRESULT

Remarks
To remove a single Output object, use Remove or the Delete method of the Output object.

For more information on the Remove method, go to Outputs Collection method - Remove on page 92. For more
informtion on the Delete method, go to Output method - Delete on page 96. For more information on the Output
object, go to Output object on page 92.

Outputs Collection method - Item
Use to return an Output object within the Outputs collection.

Syntax
Item(Index as Variant)

Arguments

Index
Required. The index of the Output object as an integer (Long) from 1 - the number of Output objects in the
collection.

91

Minitab Statistical Software Command Object Reference

Returns
Output on page 92

Outputs Collection method - Remove
Use to delete an Output object and remove it from the Outputs collection.

Syntax
Remove(Index as Variant)

Arguments

Index
Required. The index of the output as an integer (Long) from 1 - the number of outputs in the collection.

Returns
HRESULT

Remarks
The same results can be achieved using the Delete method of the Output object. To remove all Output objects,
use the Delete method of the Outputs collection.

For more information on the Delete method of the Output object, go to Output method - Delete on page 96. For
more information on the Output object, go to Output object on page 92. For more information on the Delete
method of the Outputs collection, go to Constants Collection method - Delete on page 66. For more information on
the Outputs collection, go to Outputs Collection object on page 90.

Output object
Each Output object contains one component of the output from a Minitab Command object.

The OutputType and Tag properties are universal and apply to all Output objects. Each of the remaining properties
are valid only for one specific output type. For example, using the Formula property on an Output object of type
OTFormula, returns a Formula object. Using the Formula property on any other MtbOutputTypes returns an
error.

For more information on a Minitab command object, go to Command object on page 86. For more information on
OTFormula, go to MtbOutputTypes on page 7. For more information on MtbOutputTypes, go to MtbOutputTypes
on page 7.

Properties
DescriptionProperty

If the Output object is a graph, this property returns the corresponding Graph
object.

Graph on page 94

The contents of the Output object as HTML-formatted text.HTMLText on page 94

92

Minitab Statistical Software Command Object Reference

DescriptionProperty

The Output object type.OutputType on page 95

The contents of the Output object as RTF-formatted text.RTFText on page 95

A string used to identify or describe the Output object.Tag on page 95

The contents of the Output object as un-formatted text.Text on page 96

Methods
DescriptionMethod

Use to delete an Output object and remove it from the Outputs collection.Delete on page 96

Examples
Create aMinitab Application object and execute several Minitab commands. Then loop through all Output objects
in the Outputs collection for each Command, using the OutputType property to identify each output type. Display
a message for each Output object stating the Index number of the Command, as well as the Index number,
OutputType, and the Text of the Output object. Finally, save all output for all commands as an HTM file, using the
OutputDocument object of the Commands collection.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj;
Mtb.Command mtbCmnd;
Mtb.Output mtbOutObj;
string msgStr;

mtbApp.UserInterface.Visible = true;
mtbProj = mtbApp.ActiveProject;

//Execute some Minitab commands
mtbProj.ExecuteCommand("RAND 30 C1-C4");
mtbProj.ExecuteCommand("PLOT C1*C2");
mtbProj.ExecuteCommand("REGRESS C1 1 C2; RESPONSE C1; CONTINUOUS C2; TERMS C2.");
mtbProj.ExecuteCommand("CORR C1 C2 C3 C4");

//Add a worksheet and create a DOE design

mtbProj.Worksheets.Add();
mtbProj.ExecuteCommand("FFDESIGN 4 8; CTPT c3; RANDOMIZE; SORDER C1 C2; BRIEF 4;" +

"ALIAS 4; XMATRIX C5 C6 C7 C8.");

//Loop through outputs from commands, identify type of each, and display message
for (int i = 1; i <= mtbProj.Commands.Count; i++)
{

mtbCmnd = mtbProj.Commands.Item(i);

for (int j = 1; j <= mtbCmnd.Outputs.Count; j++)
{

mtbOutObj = mtbCmnd.Outputs.Item(j);

msgStr = "Command #" + i + ", " + "Output #" + j + " is OutputType ";

int caseSwitch = mtbOutObj.OutputType.GetHashCode();
switch (caseSwitch)
{

case 0: //Graph
MessageBox.Show(msgStr + "Graph.");
break;

case 1: //Table
MessageBox.Show(msgStr + "Table with the following text:\r\n" +

93

Minitab Statistical Software Command Object Reference

mtbOutObj.Table.Text);
break;

case 4: //Message
MessageBox.Show(msgStr + "Message with the following text:\r\n" +

mtbOutObj.Message.Text);
break;

}
}

}

//Save OutputDocument as an HTM file named mtb_out.htm
mtbProj.Commands.OutputDocument.SaveAs("C:\\mtb_out", true);

Create a new instance of Minitab, generate two columns of random data, and run a correlation analysis. Display the
Text, RTFText, and HTMLText for each output of the analysis in a message box.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj;
Mtb.Outputs mtbOuts;
Mtb.Output mtbOut;

mtbApp.UserInterface.Visible = true;
mtbProj = mtbApp.ActiveProject;

mtbProj.ExecuteCommand("RAND 30 C1-C2");
mtbProj.ExecuteCommand("CORRELATION C1 C2");
mtbOuts = mtbProj.Commands.Item(2).Outputs;

for (int i = 1; i <= mtbOuts.Count; i++)
{

mtbOut = mtbOuts.Item(i);
MessageBox.Show("Text for Output " + i + ":\r\n\r\n" + mtbOut.Text);
MessageBox.Show("RTFText for Output " + i + ":\r\n\r\n" + mtbOut.RTFText);
MessageBox.Show("HTMLText for Output " + i + ":\r\n\r\n" + mtbOut.HTMLText);

}

Output property - Graph
Description

If the Output object is a graph, this property returns the corresponding Graph object. Otherwise, an error is
generated.

Type
Graph on page 99

Range
N/A

Access
Read-only

Output property - HTMLText
Description

The contents of the Output object as HTML-formatted text.

Type
String

94

Minitab Statistical Software Command Object Reference

Range
Valid string

Access
Read-only

Output property - OutputType
Description

The Output object type.

Type
MtbOutputTypes on page 7

Range
Any MtbOutputTypes constant

Access
Read-only

Output property - RTFText
Description

The contents of the Output object as RTF-formatted text.

Type
String

Range
Valid string

Access
Read-only

Output property - Tag
Description

A string used to identify or describe the Output object. Null by default.

Type
String

Range
Valid string

Access
Read/Write

95

Minitab Statistical Software Command Object Reference

Example
Set the Tag text for the first Output object in mtbCommand to "This is Output number 1," then display the tag in a
message box.
mtbCommand.Outputs.Item(1).Tag = "This is Output number 1";
MessageBox.Show(mtbCommand.Outputs.Item(1).Tag);

Output property - Text
Description

The contents of the Output object as un-formatted text.

Type
String

Range
Valid string

Access
Read-only

Output method - Delete
Use to delete an Output object and remove it from the Outputs collection.

Syntax
Delete()

Returns
HRESULT

Example
Delete the first Output object from the command set as mtbCommand.
mtbCommand.Outputs(1).Delete

Remarks
The same results can be achieved using the Remove method of the Outputs collection.

For more information on the Remove method, go to Outputs Collection method - Remove on page 92. For more
information on the Outputs collection, go to Outputs Collection object on page 90.

OutputDocument object
An OutputDocument object contains all output generated by a single Command object or by all commands in the
Commands collection.

96

Minitab Statistical Software Command Object Reference

For more information on the command object, go to Command object on page 86. For more information on the
commands collection, go to Commands Collection object on page 83.

Properties
DescriptionProperty

Content of OutputDocument in HTML format.HTMLText on page 97

Content of OutputDocument in RTF format.RTFText on page 98

Content of OutputDocument as plain text.Text on page 98

Methods
DescriptionMethod

Use to copy the OutputDocument object to the Windows clipboard.CopyToClipboard on page 98

Use to save a copy of the OutputDocument object.SaveAs on page 98

Example
Create a Minitab Application object and execute some Minitab commands. Save the OutputDocument for the
Commands collection and copy it to the Windows clipboard. Save the content of the OutputDocument in string
variables as text, HTML formatted text, and RTF formatted text.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj;
Mtb.OutputDocument mtbOutDoc;
string sText, sHTML, sRTF;

mtbApp.UserInterface.Visible = true;
mtbProj = mtbApp.ActiveProject;

mtbProj.ExecuteCommand("RAND 30 C1");
mtbProj.ExecuteCommand("DESCRIBE C1");

mtbOutDoc = mtbProj.Commands.OutputDocument;

mtbOutDoc.SaveAs("C:\\MyOutputDocument", true,
Mtb.MtbOutputFileTypes.OFRTF);
mtbOutDoc.CopyToClipboard();
sText = mtbOutDoc.Text;
sHTML = mtbOutDoc.HTMLText;
sRTF = mtbOutDoc.RTFText;

OutputDocument property - HTMLText
Description

Content of OutputDocument in HTML format.

Type
String

Range
Valid string

97

Minitab Statistical Software Command Object Reference

Access
Read-only

OutputDocument property - RTFText
Description

Content of OutputDocument in RTF format.

Type
String

Range
Valid string

Access
Read-only

OutputDocument property - Text
Description

Content of OutputDocument as plain text.

Type
String

Range
Valid string

Access
Read-only

OutputDocument method - CopyToClipboard
Use to copy the OutputDocument object to the Windows clipboard.

Syntax
CopyToClipboard()

Returns
HRESULT

OutputDocument method - SaveAs
Use to save a copy of the OutputDocument object.

98

Minitab Statistical Software Command Object Reference

Syntax
SaveAs(Filename as String, Replace as Boolean, OutputFileType as MtbOutputFileTypes)

Arguments

Filename
Required. Path and file name to use when saving the file. If a path is not specified, then the DefaultFilePath
is used. For more information on the DefaultFilePath, go to ApplicationOptions property - DefaultFilePath
on page 28.

Replace
Optional. If True, an existing file with the same name will be overwritten. The default is False.

OutputFileType
Optional. The format to use when saving the file. May be any MtbOutputFileTypes constant. For more
information on MtbOutputFileTypes, go to MtbOutputFileTypes on page 7

Returns
HRESULT

Remarks
If you don't specify an extension matching the file type, the appropriate one (.HTM or .RTF) is automatically added to
the file name.

Graph object
Each Graph object contains a single graph generated by a Minitab Command object.

For more information on the Minitab command object, go to Command object on page 86.

Methods
DescriptionMethod

Use to copy the Graph object to the Windows clipboard.CopyToClipboard on page 100

Use to save a copy of the Graph object.SaveAs on page 100

Example
Create a new Minitab Application object, execute a command that generates a Graph object as Output object
number 1, retrieve the graph, and then save it as a color PNG image file. Finally, copy the graph to the system clipboard.
Mtb.Application mtbApp = new Mtb.Application();
Mtb.Project mtbProj;
Mtb.Graph mtbGraph;

mtbApp.UserInterface.Visible = true;
mtbProj = mtbApp.ActiveProject;

mtbProj.ExecuteCommand("RAND 30 C1");

99

Minitab Statistical Software Command Object Reference

mtbProj.ExecuteCommand("HISTOGRAM C1");

mtbGraph = mtbProj.Commands.Item(2).Outputs.Item(1).Graph;

mtbGraph.SaveAs("C:\\MyGraph", true, Mtb.MtbGraphFileTypes.GFPNGColor);
mtbGraph.CopyToClipboard();

Graph method - CopyToClipboard
Use to copy the Graph object to the Windows clipboard.

Syntax
CopyToClipboard()

Returns
HRESULT

Remarks
You can copy a Minitab Graph object, Bitmap, MetaFile, or Enhanced metafile. For Minitab Graph objects, either a
paste or a paste link operation is allowed with the copied object. For all other file formats, only paste is allowed.

Graph method - SaveAs
Use to save a copy of the Graph object.

Syntax
SaveAs(Filename as String, Replace as Boolean, GraphFileType as MtbGraphFileTypes,
Width as Long, Height as Long)

Arguments

Filename
Optional. Path and file name to use when saving the graph. If a path is not specified, then the DefaultFilePath
is used. The default file name isMinitab. Formore information on the DefaultFilePath, go to ApplicationOptions
property - DefaultFilePath on page 28.

Replace
Optional. If True, an existing file with the same name will be overwritten. The default is True.

GraphFileType
Optional. The format to use when saving the file. May be any MtbGraphFileTypes constant. The default is
.PNG. For more information on the MtbGraphFileTypes, go to MtbGraphFileTypes on page 6.

Width
Optional. Use to set the width of the graph in pixels.

Height
Optional. Use to set the height of the graph in pixels.

100

Minitab Statistical Software Command Object Reference

Returns
HRESULT

Remarks
If you don't specify an extension matching the file type, the appropriate one (.JPG, .PNG, .TIF, .BMP, .GIF, or .EMF) is
automatically added to the file name.

101

Minitab Statistical Software Command Object Reference

	Contents
	Getting Started
	Introducing Automation in Minitab
	Strategies for Handling Errors in COM overview

	Data Types
	Minitab Data Types
	MtbAppStatusTypes
	MtbDataTypes
	MtbFormulaStatusTypes
	MtbGraphFileTypes
	MtbOutputFileTypes
	MtbOutputTypes
	MtbValueOrderTypes

	Data Model
	Minitab Automation objects
	Minitab Command Automation Objects

	My Menu
	My Menu Overview
	My Menu Addin DLLs
	Create a Custom Menu
	Create a C# Class Library
	Add COM References
	Build and Test Your Solution

	My Menu - C# Example

	Minitab Automation Object Reference
	Application object
	Application property - ActiveProject
	Application property - AppPath
	Application property - Handle
	Application property - LastError
	Application property - Options
	Application property - Status
	Application property - UserInterface
	Application method - Help
	Application method - New
	Application method - Open
	Application method - Quit

	ApplicationOptions object
	ApplicationOptions property - ClientMissingValueDateTime
	ApplicationOptions property - ClientMissingValueNumeric
	ApplicationOptions property - DefaultFilePath
	ApplicationOptions property - DefaultOutputFileType

	UserInterface object
	UserInterface property - DisplayAlerts
	UserInterface property - Interactive
	UserInterface property - UserControl
	UserInterface property - Visible

	Project object
	Project property - ActiveWorksheet
	Project property - Commands
	Project property - Comment
	Project property - Creator
	Project property - Date
	Project property - FullName
	Project property - Name
	Project property - Path
	Project property - Worksheets
	Project method - CancelCommand
	Project method - Delete
	Project method - ExecuteCommand
	Project method - ExecuteCommandAsync
	Project method - Save
	Project method - SaveAs

	Worksheet Object Reference
	Worksheets Collection object
	Worksheets Collection property - Count
	Worksheets Collection method - Add
	Worksheets Collection method - Delete
	Worksheets Collection method - Item
	Worksheets Collection method - Open
	Worksheets Collection method - Remove

	Worksheet object
	Worksheet property - Columns
	Worksheet property - Comment
	Worksheet property - Constants
	Worksheet property - Creator
	Worksheet property - Date
	Worksheet property - FullName
	Worksheet property - Matrices
	Worksheet property - Name
	Worksheet property - Path
	Worksheet method - Delete
	Worksheet method - Save
	Worksheet method - SaveAs

	Columns Collection object
	Columns Collection property - Count
	Columns Collection method - Add
	Columns Collection method - Delete
	Columns Collection method - Item
	Columns Collection method - Remove

	Column object
	Column property - Comment
	Column property - DataType
	Column property - Formula
	Column property - FormulaStatus
	Column property - MissingCount
	Column property - Name
	Column property - Number
	Column property - RowCount
	Column property - ValueOrderType
	Column method - Clear
	Column method - Delete
	Column method - GetData
	Column method - SetData
	Column method - SetValueOrder

	Constants Collection object
	Constants Collection property - Count
	Constants Collection method - Add
	Constants Collection method - Delete
	Constants Collection method - Item
	Constants Collection method - Remove

	Constant object
	Constant property - Comment
	Constant property - DataType
	Constant property - Formula
	Constant property - FormulaStatus
	Constant property - Name
	Constant property - Number
	Constant method - Delete
	Constant method - GetData
	Constant method - SetData

	Matrices Collection object
	Matrices Collection property - Count
	Matrices Collection method - Add
	Matrices Collection method - Delete
	Matrices Collection method - Item
	Matrices Collection method - Remove

	Matrix object
	Matrix property - ColumnCount
	Matrix property - Comment
	Matrix property - MissingCount
	Matrix property - Name
	Matrix property - Number
	Matrix property - RowCount
	Matrix method - Delete
	Matrix method - GetData
	Matrix method - SetData

	Command Object Reference
	Commands Collection object
	Commands Collection property - Count
	Commands Collection property - OutputDocument
	Commands Collection method - Delete
	Commands Collection method - Item
	Commands Collection method - Remove

	Command object
	Command property - CommandLanguage
	Command property - CreateDate
	Command property - Name
	Command property - OutputDocument
	Command property - Outputs
	Command property - Tag
	Command property - Worksheet
	Command method - Delete

	Outputs Collection object
	Outputs Collection property - Count
	Outputs Collection method - Delete
	Outputs Collection method - Item
	Outputs Collection method - Remove

	Output object
	Output property - Graph
	Output property - HTMLText
	Output property - OutputType
	Output property - RTFText
	Output property - Tag
	Output property - Text
	Output method - Delete

	OutputDocument object
	OutputDocument property - HTMLText
	OutputDocument property - RTFText
	OutputDocument property - Text
	OutputDocument method - CopyToClipboard
	OutputDocument method - SaveAs

	Graph object
	Graph method - CopyToClipboard
	Graph method - SaveAs

