First, consider the difference in the sample proportions, and then examine the confidence interval.
The estimate for difference is an estimate of the difference in the population proportions. Because this value is based on sample data and not on the entire population, it is unlikely that the sample difference equals the population difference. To better estimate the population difference, use the confidence interval for the difference.
The confidence interval provides a range of likely values for the difference between two population proportions. For example, a 95% confidence level indicates that if you take 100 random samples from the population, you could expect approximately 95 of the samples to produce intervals that contain the population difference. The confidence interval helps you assess the practical significance of your results. Use your specialized knowledge to determine whether the confidence interval includes values that have practical significance for your situation. If the interval is too wide to be useful, consider increasing your sample size. For more information, go to Ways to get a more precise confidence interval.
The interval plot shows the confidence interval for the difference with a reference line that indicates the hypothesized difference of 0.
 

In these results, the estimate of the population difference in proportions in summer employment for male and female students is 0 approximately 0.099. You can be 95% confident that the ratio of population standard deviations is between approximately 0.06 and 0.13.
Minitab uses the normal approximation method and Fisher's exact method to calculate the pvalues for the 2 proportions test. If the number of events and the number of nonevents is at least 5 in both samples, use the smaller of the two pvalues. If either the number of events or the number of nonevents is less than 5 in either sample, the normal approximation method may be inaccurate. Fisher's exact method is valid for all samples, but tends to be conservative. A conservative pvalue understates the evidence against the null hypothesis.
 
 

In these results, the null hypothesis states that there is no difference in the proportion of male and female students who get a summer job. The number of events and nonevents for both samples is at least 5, so both pvalues are valid. Because the pvalues for both methods are less than 0.0001, which is less than the significance level of 0.05, the decision is to reject the null hypothesis and conclude that the proportion of students who get a summer job differs for males and females.