Erkennen von Autokorrelation in Residuen

Bei der linearen und nichtlinearen Regression wird davon ausgegangen, dass die Residuen unabhängig voneinander sind (und nicht miteinander korrelieren). Wenn diese Annahme der Unabhängigkeit nicht zutrifft, kann es zu unzuverlässigen Ergebnissen beim Anpassen von Modellen kommen. Beispielsweise überhöht eine positive Korrelation zwischen Fehlertermen tendenziell die t-Werte für Koeffizienten und lässt möglicherweise nicht signifikante Prädiktoren signifikant erscheinen.

Minitab bietet zwei Methoden, mit denen bestimmt werden kann, ob die Residuen eine Korrelation aufweisen:

  • Führen Sie anhand eines Diagramms der Residuen im Vergleich zur Reihenfolge (1, 2, 3, 4, n) eine Sichtprüfung der Residuen auf Autokorrelation durch.

    Eine positive Autokorrelation wird durch Cluster von Residuen mit demselben Vorzeichen angezeigt. Eine negative Autokorrelation ist hingegen an raschen Wechseln der Vorzeichen von aufeinander folgenden Residuen zu erkennen.

  • Prüfen Sie mit Hilfe der Durbin-Watson-Statistik, ob Autokorrelation vorliegt.

    Der Test basiert auf der Annahme, dass von einem autoregressiven Prozess erster Ordnung Fehler erzeugt werden. Fehlende Beobachtungen werden aus den Berechnungen ausgeschlossen, und es werden nur nicht fehlende Beobachtungen verwendet.

    Um eine Schlussfolgerung auf der Grundlage des Tests zu ziehen, müssen Sie die angezeigte Statistik mit der oberen und unteren Grenze in einer Tabelle vergleichen. Wenn D > Obergrenze, dann besteht keine Korrelation; wenn D < Untergrenze, dann besteht eine positive Korrelation. Liegt D zwischen den beiden Grenzen, lässt der Test keine Aussage zu.
Durch Ihre Nutzung dieser Website stimmen Sie zu, dass Cookies verwendet werden. Cookies dienen zu Analysezwecken und zum Bereitstellen personalisierter Inhalte.  Lesen Sie unsere Richtlinien