Was ist der Standardfehler des Koeffizienten?

Die Standardabweichung eines Schätzwerts wird als Standardfehler bezeichnet. Der Standardfehler des Koeffizienten misst, wie präzise das Modell den unbekannten Wert des Koeffizienten schätzt. Der Standardfehler des Koeffizienten ist immer positiv.

Verwenden Sie den Standardfehler des Koeffizienten, um die Genauigkeit des Schätzwerts für den Koeffizienten zu ermitteln. Je kleiner der Standardfehler, desto genauer ist der Schätzwert. Durch Dividieren des Koeffizienten durch seinen Standardfehler wird ein t-Wert berechnet. Wenn der zu dieser t-Statistik gehörende p-Wert kleiner als das Alpha-Niveau ist, können Sie schlussfolgern, dass sich der Koeffizient signifikant von null unterscheidet.

Ein Materialtechniker in einem Möbelwerk möchte z. B. die Festigkeit der im Werk verwendeten Spanplatten auswerten. Der Techniker erfasst bei unterschiedlichen Temperaturen Steifedaten für Abschnitte von Spanplatten, die unterschiedliche Dichtewerte aufweisen, und erzeugt die folgende Ausgabe der linearen Regression. Die Standardfehler der Koeffizienten sind in der dritten Spalte enthalten.
Koeffizienten Term Koef SE Koef t-Wert p-Wert VIF Konstante 20,1 12,2 1,65 0,111 Steife 0,2385 0,0197 12,13 0,000 1,00 Temp -0,184 0,178 -1,03 0,311 1,00

Der Standardfehler des Koeffizienten für Steife ist kleiner als der für Temp. Daher konnte das Modell den Koeffizienten für Steife mit größerer Genauigkeit schätzen. Der Standardfehler des Koeffizienten für Temp ist tatsächlich annähernd gleich dem Wert des Koeffizienten selbst, so dass der t-Wert von –1,03 zu klein ist, um eine statistische Signifikanz festzustellen. Der resultierende p-Wert ist viel größer als gängige α-Niveaus, so dass nicht gefolgert werden kann, dass sich dieser Koeffizient von null unterscheidet. Sie entfernen die Variable Temp aus dem Regressionsmodell und fahren mit der Analyse fort.

Weshalb sind alle Standardfehler für die geschätzten Regressionskoeffizienten gleich?

Wenn Ihre Designmatrix orthogonal ist, sind die Standardfehler aller geschätzten Regressionskoeffizienten gleich, und sie entsprechen der Quadratwurzel von (MSE/n), wobei MSE = mittlerer quadrierter Fehler und n = Anzahl der Beobachtungen.

Durch Ihre Nutzung dieser Website stimmen Sie zu, dass Cookies verwendet werden. Cookies dienen zu Analysezwecken und zum Bereitstellen personalisierter Inhalte.  Lesen Sie unsere Richtlinien