Übersicht über Binäres logistisches Modell anpassen

Verwenden Sie Binäres logistisches Modell anpassen, um die Beziehung zwischen einer Gruppe von Prädiktoren und einer binären Antwortvariablen zu beschreiben. Eine binäre Antwortvariable hat zwei mögliche Ergebnisse, z. B. „Bestanden“ oder „Nicht bestanden“. Sie können Wechselwirkungs- und Polynomialterme einbinden, eine schrittweise Regression durchführen und verschiedene Linkfunktionen anpassen.

Marketingfachleute eines Frühstücksflockenherstellers untersuchen z. B. die Wirksamkeit einer Anzeigenkampagne für eine neue Frühstücksflockensorte. Die Marketingfachleute können anhand der binären logistischen Regression bestimmen, ob bei Personen, die die Anzeige gesehen haben, eine höhere Wahrscheinlichkeit besteht, dass sie die Frühstücksflocken kaufen.

Nachdem Sie die Analyse durchgeführt haben, speichert Minitab das Modell, das Ihnen folgende Möglichkeiten bietet:
  • Sie können die Wahrscheinlichkeit eines Ereignisses für neue oder vorhandene Beobachtungen prognostizieren.
  • Sie können die Beziehungen zwischen den Variablen grafisch darstellen.
  • Sie können Werte finden, mit denen mehrere Antwortvariablen optimiert werden.
Weitere Informationen finden Sie unter Übersicht über gespeicherte Modelle.

Wo finde ich diese Analyse?

Um ein binäres logistisches Regressionsmodell anzupassen, wählen Sie Statistik > Regression > Binäre logistische Regression > Binäres logistisches Modell anpassen aus.

In welchen Fällen bietet sich eine andere Analyse an?

  • Wenn die Antwortvariable drei oder mehr Kategorien mit einer natürlichen Rangfolge aufweist, z. B. „Starke Ablehnung“, „Ablehnung“, „Neutral“, „Zustimmung“ und „Starke Zustimmung“, verwenden Sie Ordinale logistische Regression.
  • Wenn die Antwortvariable drei oder mehr Kategorien ohne natürliche Rangfolge aufweist, z. B. Kratzer, Delle und Riss, verwenden Sie Nominale logistische Regression.
  • Wenn mit der Antwortvariablen Ereignishäufigkeiten gezählt werden, z. B. die Anzahl der Fehler, verwenden Sie Poisson-Modell anpassen.
Durch Ihre Nutzung dieser Website stimmen Sie zu, dass Cookies verwendet werden. Cookies dienen zu Analysezwecken und zum Bereitstellen personalisierter Inhalte.  Lesen Sie unsere Richtlinien