A smoother line is a line that is fitted to the data that helps you explore the potential relationships between two variables without fitting a specific model, such as a regression line or a theoretical distribution. Smoother lines are most useful when the curvature of the relationship does not change sharply. Smoother lines added to graphs are calculated using the lowess smoothing method.

The lowess smoothing method is a common technique for determining a smoothing line. Lowess stands for locally-weighted scatterplot smoother. The routine selects a fraction (default f = 0.5) of all points, using the data closest in x-value on either side of the (x,y) point. For each data point, Minitab does a weighted linear regression, giving points closest to each x-value the most weight in the smoothing and limiting the effect of outliers. You can specify parameters to modify both the degree of smoothing and the effect of outliers. You can also specify the weight of the smoothing parameter. The larger the weights, the more the smoothed values follow the data; the smaller the weights, the less jagged the pattern is in the smoothed values.

You can add a lowess smoother line to scatterplots, matrix plots, histograms, and time series plots.

- Right-click the graph and choose .
- (Optional) In Degree of smoothing, enter a number between 0 and 1 for the fraction of the total number of points to use to calculate the fitted values at each x-value. The default is 0.5.
- (Optional) In Number of steps, enter a number from 0 to 10 to specify the number of iterations of smoothing to use to limit the effect of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2.
- Click OK.